Heavy flavour production in Pb-Pb collisions at the LHC measured by ALICE

Dieter Roehrich University of Bergen, Norway for the ALICE collaboration

- Heavy quarks
 - Probe of deconfinement
 - Quarkonia temperature measurements and phase boundary
 - Energy loss of heavy quarks in the QGP
- Measurement of open heavy flavours and quarkonia in ALICE
- Results
 - Nuclear modification factor
 - Elliptic flow
- Conclusions & outlook

Heavy quarks and heavy-ion collisions

- Early production in high-Q² processes
 - pQCD applicable for cross-sections
 - negligible thermal production (m_{c,b}>>T)
 - \rightarrow number of c,b quarks is conserved
 - \rightarrow well calibrated probe
- Heavy quark modification of the kinematics and hadronization
 - \rightarrow information on the QGP properties
- Copious heavy quark production at LHC
 - in central Pb-Pb collisions at 5.5 TeV: ~100 cc and 5-6 bb

Temperature measurements and phase boundary

Quarkonia

- Quarkonium suppression: quarkonium production is suppressed via color screening in the QGP*
- Sequential melting: differences in the quarkonium binding energies lead to a sequential melting with increasing temperature** ——>
- Regeneration: increasing cc̄ multiplicity with increasing c.m. energy
 → enhanced quarkonium production via (re)combination at hadronization or during QGP phase***

* Matsui, Satz PLB178(1986), **Karsch, Satz Z.Phys.C51 (1991) 209, Digal, Petreczcy, Satz (2001) ***Braun-Munzinger, Stachel PLB490(2000), Thews et al. PRC62(2000)

$$r_{q\overline{q}} \sim 1/E_{binding} > r_D \sim 1/T$$

ALICE set-up

Open heavy flavours and quarkonia in ALICE

Energy loss – quantitative measurements

Hadron $p_{\rm T}$ spectra

• Nuclear Modification Factor R_{AA}

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{\left\langle N_{binary} \right\rangle d^2 N^{pp} / dp_T d\eta}$$

- Energy loss depends on:
 - Colour charge $\Delta E_g > \Delta E_{u,d,s}$
 - Parton mass $\Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

Strong suppression of Dmesons yields in the most central Pb-Pb collisions at mid-rapidity

- up to a factor 5 at $p_{\rm T} \approx 10$ GeV/c

STAR results at √s_{NN}=200 GeV • indicate that $R_{AA} > 1$ at low p_T

D-meson suppression in Pb-Pb collisions

- Strong final-state interactions of the charm quarks with the medium suggested by model calculations
- Main mechanism at play: energy loss via collisional and radiative processes
- A pQCD calculation implementing only shadowing indicates mild Cold Nuclear Matter (CNM) effects

9

Mass dependence of open heavy-flavour R_{AA} (I)

- Comparison of D-meson and prompt D_s-meson (charmed, strange meson) *R*_{AA}
 - the values of the strange D_s-meson R_{AA} are higher than those of non-strange D-mesons
 - effect of hadronisation via quark recombination in the partonic medium?

10

Mass dependence of open heavy-flavour R_{AA} (II)

Comparison of pions, D mesons and non-prompt J/ ψ R_{AA}

- $R_{AA}(D) \sim R_{AA}(pions)$
- $R_{AA}(D) < R_{AA}(B \rightarrow J/\psi)$
 - hint of mass hierarchy of the R_{AA}
 - described by a model including mass-dependent radiative and collisional energy loss

ALICE, JHEP 1511 (2015) 205 CMS, PAS-HIN-12-014 (non-prompt J/ψ)

Open heavy-flavour production in p-Pb collisions

ALICE, PRL113 (2014), 232301, arXiv:1605.07569

- *R*_{pPb} of D-mesons consistent with unity
- no indication for suppression larger than 15-20% at intermediate/high p_T
- *R*_{pPb} described within uncertainties by models including initial- or finalstate effects

Inclusive J/ψ suppression in Pb-Pb collisions at 5.02 TeV

 Similar suppression pattern at both 5.02 and 2.76 TeV with nearly no centrality dependence for N_{part} > 100; R_{AA} at 5.02 TeV is ~15% higher than the one at 2.76 TeV

Hint of a mild (~10%) increase of R_{AA} at 5 TeV for 2 < p_T < 6 GeV/c

JHEP 1605 (2016) 179

J/ψ suppression vs re-generation: comparison to models

- 2.76 TeV ¥^{1.4} $R_{\rm AA}$ ALICE, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV $\rightarrow \mu^+\mu^-$, Pb-Pb $\sqrt{s_{\mu\mu}} = 2.76 \text{ TeV}$ 1.4 Inclusive $J/\psi \rightarrow \mu^+\mu^-$ ALICE, 2.5<y<4, p_<8 GeV/c global syst.= ± 15% 1.2 $2.5 < y < 4, 0.3 < p_{-} < 8 \text{ GeV}/c$ 0.8 0.8 0.6 0.6 0.4 0.4 TM1 0.2 Fransport. p. > 0.3 GeV/c (TM1, Du and Ra TM2 0.2 Transport (TM2, Zhou et al.) Statistical hadronization (Andronic et al.) CIM Co-movers (Ferreiro) 300 350 50 100 150 250 400 0 200 450 50 150 250 300 350 400100 200 ٧N part ALT-DER-110551
- $J/\psi R_{AA}$ vs centrality at 2.76 and 5.02 TeV

- Comparison to the same models at both energies
 - SHM (Andronic et al.): all J/ ψ produced by statistical hadronisation at the QGP phase boundary
 - TM (Du et al. and Zhou et al.): rate equation of suppression and regeneration by/in the QGP
 - CIM (Ferreiro): suppression by the co-moving partonic medium and regeneration

Y(1S) R_{AA} in Pb-Pb collisions at 5.02 TeV

- Bottomonium is much less affected by regeneration effects \rightarrow cleaner probe for the medium properties
- Slightly less suppression at higher collision energy
- The suppression trend is reasonably described by transport model calculations with (Emerick et al.) or without (Zhou et al.) regeneration

Quarkonia in p-Pb collisions at 5.02 TeV

JHEP02 (2014) 073, JHEP06 (2015) 055

PLB740 (2015) 105

- J/ ψ and Y(1S) are suppressed at forward rapidity
- At backward rapidity both states are compatible with no suppression
- Data are consistent with expectations from shadowing and energy loss models

Nuclear geometry and hydrodynamic flow

 Interactions transfer the initial spatial geometry of matter into a momentum anisotropy of final-state particles

Transfer depends on the strength of collective phenomena

- Large mean free path
 - · particles stream out isotropically, no memory of the asymmetry
 - extreme: ideal gas (infinite mean free path)
- Small mean free path
 - larger density gradient → larger pressure gradient → larger momentum
 - extreme: ideal liquid (zero mean free path, hydrodynamic limit)

Open heavy-flavour elliptic flow in Pb-Pb collisions

ALICE, PRC 90 (2014) 3, 034904

Phys.Rev.C90(2014)034904

- Significant positive v₂ in 2<p_T<6 GeV/c (with 5.7σ) for collision centrality 30-50%
- Heavy quarks at low p_T participate in the collective motion of the system

Inclusive J/ψ elliptic flow in Pb-Pb

- If c quarks participate in the collective motion of the QGP, then they will acquire some elliptic flow
- Regenerated J/ψ will inherit the elliptic flow of the c quarks
- Qualitatively described by models including regeneration

Conclusion

- Open heavy-flavours
 - Strong modification of the charm and beauty kinematics in Pb-Pb collisions w.r.t. pp collisions, with a significant centrality dependence
 - Indication of a stronger suppression of D-mesons w.r.t. non-prompt J/ψ at intermediate/high p_T
 - \rightarrow quark-mass dependent energy loss
 - Significant D-meson elliptic flow
 - No large CNM effects supported by the p-Pb data
 - \rightarrow the strong suppression in central Pb-Pb collisions is largely a hot medium effect

Quarkonia

- New results on J/ψ suppression in Pb-Pb collisions at 5.02 TeV indicate similar suppression level as the 2.76 TeV data
- The p_T dependence of the J/ ψ suppression suggests an important contribution from regeneration
- The new Y(1S) results at 5.02 TeV confirm the strong suppression observed in central Pb-Pb collisions at 2.76 TeV

Outlook

- Run-2 data taking ongoing
 - Improve statistical and systematic uncertainties
 - Extend the measured p_{T} range to further constrain theory
 - Understand and disentangle Cold Nuclear Matter effects
 - High statistics open heavy-flavour and J/ψ elliptic flow measurements
- Detector upgrade will improve heavy-flavour capabilities (2019-2020)

This is the end

Rephrasing it ...

Habe nun, ach! Philosophie, Juristerei und Medizin, **Und leider auch Theologie** Durchaus studiert, mit heißem Bemühn. Da steh ich nun, ich armer Tor! Und bin so klug als wie zuvor; [...] Drum hab ich mich der Magie ergeben, [...] Daß ich erkenne, was die Welt Im Innersten zusammenhält, ... Ah! Now I've done Philosophy, I've finished Law and Medicine,

Goethe, Faust I, Vers 382 f.

 Ah! Now I've done Philosophy,

 I've finished Law and Medicine,

 And sadly even Theology:

 Taken fierce pains, from end to end.

 Now here I am, a fool for sure!

 No wiser than I was before:

 [...]

 So I've given myself to Magic art,

 [...]

 That I may understand whatever

 23

 Binds the world's innermost core together, ...