Relativistic approach to nuclear spin-isospin excitations including quasiparticle-vibration coupling

Caroline Robin, Elena Litvinova

Western Michigan University, USA

International Nuclear Physics Conference (INPC) September 11-16, 2016, Adelaide, Australia.

Introduction - Motivations

The study of nuclear isospin-transfer excitations has many applications in

- \rightarrow Nuclear physics: constraints on the (S,T) channels of the nuclear interaction... \varkappa
- → **Particle physics:** nature of neutrinos ($0\nu\beta\beta$ decay), ...
- → Astrophysics:

Fermi and Gamow-Teller transitions determine the rates of many weak processes occurring in stellar environments...

$$\beta^+$$
 decay:
 $(A,Z) \rightarrow (A,Z-1) + e^+ + \nu_e$

electron capture: $(A,Z) + e^- \rightarrow (A,Z-1) + \nu_e$

Astrophysical modeling requires properties of nuclei far from stability not yet reached experimentally

\rightarrow need precise and consistent information from theory

Theoretical framework: spin-isospin response of nuclei with relativistic quasiparticle-vibration coupling

Applications: Gamow-Teller transitions in neutron-rich Nickel isotopes and β-decay half-lives

Theoretical framework: spin-isospin response of nuclei with relativistic quasiparticle-vibration coupling

Applications: Gamow-Teller transitions in neutron-rich Nickel isotopes and β-decay half-lives

Response of nuclei to a weak external field - linear response theory

$$R = GG - iGGVR$$

Response of nuclei to a weak external field - linear response theory

Response of nuclei to a weak external field - linear response theory

Nucleonic self-energy

Expansion in term of the meson-exchange interaction:

Nucleonic self-energy

Expansion in term of the meson-exchange interaction:

 $\pi, \sigma, \omega, \rho, \gamma$

$$R(\omega) = \widetilde{G}\widetilde{G} - i\widetilde{G}\widetilde{G}(\widetilde{V} + \Phi(\omega))R(\omega)$$

$$R(\omega) = \widetilde{G}\widetilde{G} - i\widetilde{G}\widetilde{G}(\widetilde{V} + \Phi(\omega))R(\omega)$$

Nuclear response with dynamic self-energy

$$R(\omega) = \widetilde{G}\widetilde{G} - i\widetilde{G}\widetilde{G}(\widetilde{V} + \Phi(\omega))R(\omega)$$

Nuclear response with dynamic self-energy

Nuclear response with dynamic self-energy

Applications: Gamow-Teller transitions in neutron-rich Nickel isotopes and β-decay half-lives

Gamow-Teller resonance in Nickel (Ni → Cu)

Gamow-Teller resonance in Nickel (Ni → Cu)

Beta-decay half-lives

C.R. and E. Litvinova EPJA 52, 205 (2016).

New developments: coupling to charge-exchange phonons

Existence of low-energy isospin-flip modes which can couple to single-nucleon degrees of freedom \rightarrow additional terms in the effective interaction:

Theoretical framework: spin-isospin response of nuclei with relativistic quasiparticle-vibration coupling

Applications: Gamow-Teller transitions in neutron-rich Nickel isotopes and β-decay half-lives

Conclusion - perspectives

→ Conclusions:

The pn-RQTBA (pn-RQRPA + QPVC) has potential to describe both

- ★ the details of the low-lying transition strength → important for beta-decay halflives and other rates of weak processes, which are very sensitive to the coupling between single-particle and collective degrees of freedom
- ★ the overall strength distribution up to high excitation energy → important to reproduce (part of) the observed "quenching" of the GT strength without any artificial factor

→ **Perspectives:**

- * Inclusion of the coupling to pn pairing phonons in doubly magic (N=Z) nuclei
- Inclusion of ground-state correlations (backward-going diagrams) beyond the RQRPA ones
- Application to double-beta decay
- * Together with RQTBA in neutral channel, this framework provides a high-quality and consistent description of both phases of the r-process nucleosynthesis, (n,γ) and β -decay \Rightarrow implementation in astrophysical modeling

This work is supported by US-NSF Grants PHY-1404343 and PHY-1204486

→ Conclusions:

The pn-RQTBA (pn-RQRPA + QPVC) has potential to describe both

* Application to double-beta decay

★ Together with RQTBA in neutral channel, this framework provides a high-quality and consistent description of both phases of the r-process nucleosynthesis, (n,γ) and β -decay \Rightarrow implementation in astrophysical modeling

This work is supported by US-NSF Grants PHY-1404343 and PHY-1204486

Backup

Time-Blocking Approximation

Problem: Integration over all intermediate times \Rightarrow complicated BSE (integrations do not separate), appearance of NpNh configurations:

Solution: Time-Blocking Approximation [V.I. Tselyaev, Yad. Fiz. 50,1252 (1989)]

→ allowed configurations:

 $1p1h \otimes 1$ phonon (2p2h) → spreading

 \rightarrow blocked configurations: 3p3h, 4p4h...

... but can be included in a next step (under development)

Response function in the proton-neutron channel

Note: simple-pole structure due to TBA \rightarrow ensures locality and unitarity of the response \rightarrow strength is positive-definite

Numerical scheme

Relativistic mean-field with pairing

(RH+BCS, NL3, monopole pairing force)

Solve RQRPA

⇒ neutral (non-isospin flip) phonons with natural parities 2⁺, 3⁻, 4⁺, 5⁻, 6⁺ up to 30 MeV and their coupling vertices

р

p"

p'

Solve BSE with RQTBA for the proton-neutron response function (Gamow-Teller: $J^{\pi} = 1^+$)

Convergence of the strength according to the phonon spectrum (neutral phonons):

C. Robin and E. Litvinova EPJA 52, 205 (2016).

Effect of pairing correlations on the strength distribution:

Gamow-Teller resonance in Nickel

Gamow-Teller resonance in Nickel

