THEORETICAL ANALYSIS OF PROTON EMISSION FOLLOWING BETA-DECAY OF ⁵⁶ZN

<u>W. A. Richter¹</u>, N. A. Smirnova and B. Blank², B. A. Brown³, N. Benouaret⁴, Y. H. Lam⁵.

- ¹ iThemba LABS and University of the Western Cape, South Africa
- ² CENBG, CNRS/INP2P3, University of Bordeaux, France
- ³NSCL, Michigan State University, USA
- ⁴ USTHB, Algeria
- ⁵ Key Laboratory of High Precision Nuclear Spectroscopy, Lanzhou, China

OUTLINE

Introduction: First observation of β -delayed γ -proton decay in the fp shell – Zn-56 (Dossat NPA 792, 2007)

Detailed measurements (Orrigo PRL 112, 2014) Strong isospin mixing of T=2, 0⁺ IAS with nearby 0⁺, T=1 state deduced

Question: Why is gamma de-excitation from IAS observed in competition with p decay ? Similar intensities

This work addresses this question using shellmodel calculations with 2 INC interactions

INTRODUCTION

To explain the observed proton decays to Ni-55 (T=1/2) from the IAS in Cu-56, which are isospin forbidden, it is assumed that the IAS mixes with a nearby T=1 state.

From experiment there is a 0+ T=1 state at 3423 keV i.e. 85 keV below the IAS.

A striking feature of the decay is that the proton and gamma decay widths are very similar, despite a large amount of isospin mixing.

 $I_p = 18.8(10)\%$ and $I_\gamma = 19.2(10)\%$

To understand the decay features and to cross-check theoretical descriptions, we performed large-scale shell-model calculations in the full fp shell.

Interactions used:

1) cdGX1A (NuShellX). Based on GXPF1A with addition of Coulomb, strong charge-asymmetry and chargeindependence-breaking interactions and isovector SPE.

2) cdKB3G (ANTOINE) based on KB3G with addition of Coulomb and isovector SPE.

Isospin mixing of the IAS

Suppose the mixing can be modelled as the admixture of a close-lying 0+, T=1 state (two-level mixing). Thus

$$|IAS> = \sqrt{1-\alpha 2} |T=2> + \alpha |T=1>$$

It is concluded from the splitting of the Fermi strength B(F) from the 0+ ground state of Zn-56 that $\alpha 2 = 33(10)\%$.

Thus despite this large mixing and Ep = 2948(10) keV proton decay is not the dominant mode but comparable to γ decay

Using
$$R = \frac{B(F)3432}{B(F)3508} = 0.69(20)$$
 (exp) and

 $\Delta E = 85(10) \ keV$, mixing matrix element is

 $V = \Delta E.R/(1+R^2) \sim 40$ keV.

The spectroscopic factor for proton emission from the IAS can be expressed as $S^{IAS} = \alpha^2 S^{T=1}$

In 1st order perturbation theory the magnitude of mixing is proportional to $(V/\Delta E)^2$

The mixing matrix elements V_{INC} for the two interactions are reasonably well reproduced (20 keV – cdGX1A and 48 keV – cdKB3G) but the energy spacings are much too large, resulting in a small amount of mixing of the order of 1%.

In Table I we show spectroscopic factors for the 0⁺, T=1 state in Cu-56 and the 0⁺ IAS, but deduce the latter by using the experimental amount of mixing.

The values are somewhat larger than the experimental spectroscopic factors, but still quite small.

TABLE I: Comparison of experimental and theoretical quantities of ⁵⁶Zn. The β -decay half-life of ⁵⁶Zn, the excitation energy of the 0⁺ IAS and of the admixed 0⁺ state in ⁵⁶Cu are shown together with their electromagnetic and proton decay characteristics.

	Exp	cdGX1A	cdKB3G	
56 Zn				
$T_{1/2} [{\rm ms}]$	32.9(4)	35(4)	24(4)	
56 Cu, 0 ⁺ ,IAS				
E^{IAS} [MeV]	3.508(140)	3.505	3.827	
S^{IAS}	$0.12(4) \times 10^{-3}$	1.5×10^{-3}	3.1×10^{-3}	
Γ_p^{IAS} [eV]	0.13(4)	1.6(1)	3.2(2)	
Γ_{γ}^{IAS} [eV]		0.16	0.11	
56 Cu, 0 ⁺ , T=1				
$E^{T=1}$ [MeV]	3.423(140)	2.910	3.456	
$S^{T=1}$	$0.4(1) \times 10^{-3}$	4.4×10^{-3}	9.4×10^{-3}	
$\Gamma_p^{T=1}$ [eV]	0.32(8)	3.6(2)	7.7(3)	
$\Gamma_{\gamma}^{T=1}$ [eV]		0.04	0.02	
α^2 (%)	33(10)	11	34	

TABLE II: Excitation energies, interaction mixing matrix element and spectroscopic factors of the lowest 0^+ states in 56 Cu with respect to proton emission to the $7/2^-$ ground state of 55 Ni. The values corresponding to the IAS are shown in bold.

State	cdGX1A			cdKB3G		
	E^*	$V_{\rm INC}$	S_p	E^*	V_{INC}	S_p
	[MeV]	$[\mathrm{keV}]$		[MeV]	$[\mathrm{keV}]$	
0_{1}^{+}	1.253	25	0.0590	1.469	16	0.0336
0_{2}^{+}	2.675	20	0.0083	3.456	48	0.0094
0^{+}_{3}	2.910	20	0.0044	3.827	-	0.0002
0_{4}^{+}	3.505	-	0.0021	4.007	16	0.0076
0_{5}^{+}	3.511	3	0.0035	4.611	1	0.0044

The main conclusion of our analysis is that the hindrance of the proton decay from the IAS is due to a very small overlap between the admixed 0⁺, T=1 state of ⁵⁶Cu and the ground state of ⁵⁵Ni plus an $f_{7/2}$ proton.

Proton emission from the admixed 0⁺, T=1 state is allowed by the isospin quantum number selection rule, however, it is hindered by nuclear structure effects.

