Laser spectroscopy on

nobelium isotopes at SHIP

S. Raeder for the RADRIS collaboration Helmholtz Institut Mainz

RADRIS Collaboration

GSI Darmstadt M. Block, F. P. Heßberger, A. Yakushev

TU Darmstadt P. Chhetri, O. Kaleja, F. Lautenschläger, Th. Walther Universität Mainz H. Backe, W. Lauth, Ch. E. Düllmann, Lens Lotte KU Leuven R. Ferrer KVI-Cart J. Even TRIUMF Vancouver P. Kunz University of Liverpool B. Cheal, C. Wraith, Ch. Howarth GANIL D. Ackermann, N. Lecesne HIM Mainz M. Laatiaoui, S. Raeder, F. Giacoppo, A. Mistry, J. Khuyagbaatar, S. Götz Universität Greifswald Ch. Droese IPNO E. Minaya Ramirez

Landscape of optical spectroscopy

Motivaton - Atomic Properties

Atomic ground state: [Rn]5f¹⁴7s² ¹S₀

• $Z\alpha \rightarrow 1$: relativistic effects in the electronic structure

- Strong electron correlations
- Benchmark predictive power of atomic theory
- Ionization potential IP

 Model
 1, 2 (MCDF): S.Fritzsche, Eur. Phys. J. D 33 (2005) 15

 calculations
 3 (IHFSCC): A.Borschevsky et al., Phys. Rev. A 75 (2007) 042514
 4 (RCC): V.A.Dzuba et al., Phys. Rev. A 90 (2014) 012504
5 (MCDF): Y.Liu et al., Phys. Rev. A 76 (2007) 062503

6 (MCDF): P.Indelicato et al., Eur. Phys. J. D 45 (2007) 155 7 (extrapolation): J.Sugar, J. Chem. Phys. 60 (1974) 4103

Motivaton – Nuclear Properties

Atomic ground state: [Rn]5f¹⁴7s² ¹S₀

Model calculations

1, 2 (MCDF): S.Fritzsche, Eur. Phys. J. D 33 (2005) 15
3 (IHFSCC): A.Borschevsky et al., Phys. Rev. A 75 (2007) 042514 4 (RCC): V.A.Dzuba et al., Phys. Rev. A 90 (2014) 012504
5 (MCDF): Y.Liu et al., Phys. Rev. A 76 (2007) 062503

Hyperfine splitting (HFS) μ , Q, I Ground state parameters $A = \mu \frac{B_e(0)}{IJ}$; $B = eQ_s \left\langle \frac{\delta^2 V}{\delta z^2} \right\rangle$

Isotope shift

 Δr^2 Nuclear Shape, deformation

$$\delta v^{\dot{A}A} = F \lambda^{\dot{A}A} + \left(N + S\right) \left(\frac{\dot{A} - A}{\dot{A}A}\right)$$

6 (MCDF): P.Indelicato et al., Eur. Phys. J. D 45 (2007) 155 7 (extrapolation): J.Sugar, J. Chem. Phys. 60 (1974) 4103

Velocity filter SHIP

Radiation Detected Resonance Ionization Spectroscopy

RADRIS Method:

- Thermalizing of incoming fusion products
- Collecting onto thin tantalum wire
- Evaporation and two-step photoionization process
- Transport to detector and detection of alpha decay

H. Backe et al., Nucl Phys. A **944**, 492 (2015) F. Lautenschläger et al., NIMB **383**, 115 (2016)

Resonance Ionization Spectroscopy

Non-resonant ionization is 2-3 order of magnitude less efficient

BUT does not depend on knowledge on the atomic structure

Laser system

S. Raeder - 15.09.2016 - INPC 2016 Adelaide

Level search in ²⁵⁴No

The ground-state transition

Observed strong atomic ground state transition

Saturation of signal already at energies on the order of a few μ J/pulse

	v ₁ (cm ⁻¹)	A _{ki} (s ⁻¹) x 10 ⁸	
Experiment [1]	29,961.457(7) _{stat}	4.2 (2.6) _{stat}	Agrees with predicted
IHFSCC [2]	30,100(800)	5.0	${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ transition
MCDF [3]	30,650(800)	2.7	
[1] M. Laatiaoui et al., Natu	ire (in press) [2] A. Borschevs	sky et al., Phys. Rev. A 75 (2007	7) 042514
[3] P. Indelicato et al., Eur.	Phys. J. D 45, (2007) 155		

HELMHOLTZ

Hyperfine structure studies in ²⁵³No

- 2 peaks resolved (3 peaks expected)
- Assuming a prolate shape & best fit to the data:
 - → I=7/2 nuclear spin can be excluded
 - → A = 734(46) MHz; B = 2815(686) MHz

Hyperfine structure studies in ²⁵³No

- 2 peaks resolved (3 peaks expected)
- Assuming a prolate shape & best fit to the data:
 - → I=7/2 nuclear spin can be excluded
 - → A = 734(46) MHz; B = 2815(686) MHz

• Feedback from atomic theory for nuclear moments

B(0)		Ref.	μ (μ _N)	Q _s (b)
$A = \mu \frac{D_e(0)}{II}$		RCC [1]	-0.444 ±0.028*	5.79 ±1.42*
	Laser spec. (this work)	RCC [2]	-0.527 ±0.034*	
$B = eO\left\langle \frac{\delta^2 V}{\Delta} \right\rangle$		MCDF [3]	-0.808±0.051*	6.34 ±1.56*
$\delta z^2 / z_{z=0}$	Nucl. structure	[4]	-0.593	7.145

[1] V.A. Dzuba et al. (RCC), [2] A. Borschevsky et al. (RCC), [3] R. Beerwerth & S. Fritzsche (MCDF), [4] R.D. Herzberg et al., Eur. Phys. J. A 42, 333-337 (2009), *: Error from the fit

Hyperfine structure studies in ²⁵³No

HELMHOLTZ

→ Nuclear model independent confirmation of expected nuclear properties

[1] V.A. Dzuba et al. (RCC), [2] A. Borschevsky et al. (RCC), [3] R. Beerwerth & S. Fritzsche (MCDF), [4] R.D. Herzberg et al., Eur. Phys. J. A **42**, 333-337 (2009), [5] P. Reiter et al. PRL 95, 032501 (2005)

Isotope shift of ²⁵²⁻²⁵⁴No

Input from atomic theory

- Mass-shift constant: 1066 GHz u
- Field-shift parameter: -113.2 GHz/fm² (R. Beerwerth & S. Fritzsche (MCDF))

$$\delta \left\langle r^{2} \right\rangle^{AA'} = \left(\Delta v^{AA'} - \frac{A - A'}{AA'} M \right) \frac{1}{F}$$

Isotope	Ν	δ <r²> (fm²)</r²>
²⁵⁴ No	152	0
²⁵³ No	151	-0.057 (1) _{stat}
²⁵² No	150	-0.089 (4) _{stat}

S. Raeder - 15.09.2016 - INPC 2016 Adelaide

Isotope shift of ²⁵²⁻²⁵⁴No

Input from atomic theory

- Mass-shift constant: 1066 GHz u
- Field-shift parameter: -113.2 GHz/fm²

(R. Beerwerth & S. Fritzsche (MCDF))

S. Raeder - 15.09.2016 - INPC 2016 Adelaide

Conclusions

- First laser spectroscopy on a transfermium element
- Strong ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ ground-state transition in the nobelium (Z=102) atom observed
- Access to nuclear structure from HFS in ²⁵³No & IS for ²⁵²⁻²⁵⁴No

Conclusions

- First laser spectroscopy on a transfermium element
- Strong ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ ground-state transition in the nobelium (Z=102) atom observed
- Access to nuclear structure from HFS in ²⁵³No & IS for ²⁵²⁻²⁵⁴No
- Overall efficiency up to 10%
- Different Rydberg series were observed
- Accurate value for the first IP of nobelium extracted

Outlook

• Access the element lawrencium (Z=103) – started in 2016

•Studying desorption and surface ionization mechanisms ...

•First level search initiated (no resonances found so far)

Resonance ionization of ²⁵⁵No (produced via EC from ²⁵⁵Lr)

S. Raeder - 15.09.2016 - INPC 2016 Adelaide

Rydberg series

• Series fitted with Rydberg-Ritz formula. $E_n = E_{\text{IP}} - \frac{R_{\mu}}{[n - \delta(n)]^2}$

HELMHOLTZ

Association

28S September

ZAKOPANE CONFERENCE 0920 1NUNPCEARAPHIYSIC

Ionization limits & Ionization potential

ZAKOPANE CONFERENCE OP 1NUCLEAR PHYSIC

Nobelium isotopes

Isotope	۱P	T _{1/2} (s)	Nuclear reaction	Production rate @ 1µA _P (1/s)	α- energy (MeV)
²⁵² No	0	2.4	²⁰⁶ Pb(⁴⁸ Ca,2n) ²⁵² No	4	8.42
²⁵³ No	(9/2-)	102	²⁰⁷ Pb(⁴⁸ Ca,2n) ²⁵³ No	11	8.01
²⁵⁴ No	0	51	²⁰⁸ Pb(⁴⁸ Ca,2n) ²⁵⁴ No	17	8.10
²⁵⁵ No	(1/2*)	186	²⁰⁸ Pb(⁴⁸ Ca,1n) ²⁵⁵ No	2	8.12

Motivaton - Atomic Properties

4 (RCC): V.A.Dzuba et al.,

5 (MCDF): Y.Liu et al.,

Atomic ground state: [Rn]5f¹⁴7s² ¹S₀

Model calculations

1, 2 (MCDF): S.Fritzsche, Eur. Phys. J. D 33 (2005) 15 **3 (IHFSCC)**: A.Borschevsky et al., Phys. Rev. A 75 (2007) 042514

- $Z\alpha \rightarrow 1$: relativistic effects in the electronic • structure
- Benchmark predictive power of atomic theory ٠
- Ionization potential IP ٠

6 (MCDF): P.Indelicato et al., Phys. Rev. A 90 (2014) 012504 Eur. Phys. J. D 45 (2007) 155 7 (extrapolation): J.Sugar, Phys. Rev. A 76 (2007) 062503 J. Chem. Phys. 60 (1974) 4103