

Transverse Momentum Dependent parton distribution functions (TMDs)

Jianwei Qiu Brookhaven National Laboratory

11-16 September 2016

How to "see" and quantify hadron structure?

□ Our understanding of hadron evolves

See also talks by H. Gao, A. Deshpande

1970s

1980s/2000s

Now

Nucleon is a strongly interacting, relativistic bound state of quarks and gluons

□ Challenge:

No modern detector can see quarks and gluons in isolation!

Question:

How to quantify the hadron structure if we cannot see quarks and gluons? *We need the probe!*

□ Answer:

QCD factorization! *Not exact, but, controllable approximation!*

□ High energy probes "see" the **boosted** partonic structure:

Hard probe (t ~ 1/Q < fm): Catches the quantum fluctuation!

- ♦ Longitudinal momentum fraction x:
- \diamond Transverse momentum confined motion: $1/R \sim \Lambda_{
 m QCD} \ll Q$

 $\begin{aligned} xP \sim Q \\ 1/R \sim \Lambda_{\rm QCD} \ll Q \end{aligned}$

□ High energy probes "see" the **boosted** partonic structure:

Hard probe (t ~ 1/Q < fm): Catches the quantum fluctuation!

♦ Longitudinal momentum fraction – x:

 \Rightarrow Transverse momentum – confined motion: $1/R \sim \Lambda_{
m QCD} \ll Q$

 $xP \sim Q$ $1/R \sim \Lambda_{\rm QCD} \ll Q$

Quantifying the "structure":

□ High energy probes "see" the **boosted** partonic structure:

Hard probe (t ~ 1/Q < fm): Catches the quantum fluctuation!

 $\Rightarrow \text{ Longitudinal momentum fraction} - x:$

 $xP \sim Q$ $1/R \sim \Lambda_{\rm QCD} \ll Q$

♦ Transverse momentum – confined motion:

Quantifying the "structure":

□ High energy probes "see" the **boosted** partonic structure:

Hard probe (t ~ 1/Q < fm): Catches the quantum fluctuation!

♦ Longitudinal momentum fraction – x:

♦ Transverse momentum – confined motion:

 $\begin{aligned} xP \sim Q \\ 1/R \sim \Lambda_{\rm QCD} \ll Q \end{aligned}$

Quantifying the "structure":

See also talk by H. Gao

Definition of TMDs

□ Non-perturbative definition:

 $\diamond\,$ In terms of matrix elements of parton correlators:

$$\Phi^{[U]}(x, p_T; n) = \int \frac{d\xi^- d^2 \xi_T}{(2\pi)^3} e^{i p \cdot \xi} \langle P, S | \overline{\psi}(0) U(0, \xi) \psi(\xi) | P, S \rangle_{\xi^+ = 0}$$

 $\mathbf{A} \psi_i(\xi)$

P

 $\overline{\psi}_{i}(0)$

 $\Phi(p;P)$

♦ Depends on the choice of the gauge link:

 \diamond Decomposes into a list of TMDs:

Definition of TMDs

□ Non-perturbative definition:

♦ In terms of matrix elements of parton correlators:

$$\Phi^{[U]}(x, p_T; n) = \int \frac{d\xi^- d^2 \xi_T}{(2\pi)^3} e^{i p \cdot \xi} \langle P, S | \overline{\psi}(0) U(0, \xi) \psi(\xi) | P, S \rangle_{\xi^+ = 0}$$

 $\mathbf{A} \psi_i(\xi)$

P

 $\psi_i(0)$

 $\Phi(p; P)$

♦ Depends on the choice of the gauge link:

♦ Decomposes into a list of TMDs:

Gives "unique" TMDs, IF we knew proton wave function!
 But, we do NOT know proton wave function (calculate it approximately?)
 TMDs defined in this way are NOT direct physical observables!

QCD Factorization: connecting parton to hadron

QCD Factorization: connecting parton to hadron

Need two-scale observables to "see" TMDs

□ Cross sections with two-momentum scales observed: $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$

 \diamond "Soft" scale: Q_2 could be more sensitive to hadron structure, e.g., confined motion, k_T

Need two-scale observables to "see" TMDs

Cross sections with two-momentum scales observed: $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{ m QCD}$

 \diamond "Soft" scale: $Q_2\;$ could be more sensitive to hadron structure, e.g., confined motion, $k_T\;$

☐ Two-scale observables with the hadron broken:

See also talk by H. Gao

Two-jet momentum imbalance in SIDIS, ...

♦ Natural observables with TWO very different scales

TMD factorization: partons' confined motion is encoded into TMDs

Factorization for TMDs

Factorization for TMDs

Approximation – depending on the perturbatively calculated $\hat{H}(Q;\mu)$

Factorization for TMDs

TMDs: confined motion, its spin correlation

□ Power of spin – many more correlations:

SIDIS is the best for probing TMDs

□ Naturally, two scales & two planes:

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$
$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$
$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

□ Separation of TMDs:

Hard, if not impossible, to separate TMDs in hadronic collisions

Using a combination of different observables (not the same observable): jet, identified hadron, photon, ...

Modified universality for TMDs

Definition:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) = \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\,\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p,\vec{S}|\overline{\psi}(0^{-},\mathbf{0}_{\perp}) \boxed{\text{Gauge link}} \frac{\gamma^{+}}{2} \psi(y^{-},\mathbf{y}_{\perp})|p,\vec{S}\rangle$$

Gauge links:

□ Process dependence:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},\vec{S})$$

Collinear factorized PDFs are process independent

Critical test of TMD factorization

□ Parity – Time reversal invariance:

 $f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) = f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},-\vec{S})$

Definition of Sivers function:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) \equiv f_{q/h}(x,k_{\perp}) + \frac{1}{2}\Delta^{N}f_{q/h^{\uparrow}}(x,k_{\perp})\,\vec{S}\cdot\hat{p}\times\hat{\mathbf{k}}_{\perp}$$

□ Modified universality:

$$\Delta^N f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,k_{\perp}) = -\Delta^N f_{q/h^{\uparrow}}^{\text{DY}}(x,k_{\perp})$$

The spin-averaged part of this TMD is process independent, but, spin-averaged Boer-Mulder's TMD requires the sign change! Same PT symmetry examination needs for TMD gluon distributions!

Global QCD analysis: extraction of TMDs

QCD TMD factorization:

- Connect cross sections, asymmetries to TMDs
- ♦ Factorization is known or expected to be valid for SIDIS, Drell-Yan (Y*, W/Z, H⁰,...), 2-Jet imbalance in DIS, ...

Same level of reliability as collinear factorization for PDFs, up to the sign change

QCD evolution of TMDs:

- TMDs evolve when probed at different momentum scales
- \diamond Evolution equations are for TMDs in b_T-space (Fourier Conjugate of k_T)

FACT: QCD evolution does NOT fully fix TMDs in momentum space, even with TMDs fixed at low Q – large b_T -input!!!

♦ Very different from DGLAP evolution of PDFs – in momentum space

FACT: QCD evolution uniquely fix PDFs at large Q, once the PDFs is determined at lower Q – linear evolution in momentum space

□ Challenges:

Predictive power, extraction of hadron structure, ...

Evolution of Sivers function

Aybat, Collins, Qiu, Rogers, 2011

Up quark Sivers function:

Very significant growth in the width of transverse momentum – shower!

Different fits – different Q-dependence

Aybat, Prokudin, Rogers, 2012:

No disagreement on evolution equations!

Issues: Extrapolation to non-perturbative large b-region Choice of the Q-dependent "form factor"

What happened?

□ Sivers function:

Differ from PDFs!

$$F_{1T}^{\perp f}(x, k_T; \mu, \zeta_F) = \frac{-1}{2\pi k_T} \int_0^\infty db_T \, b_T J_1(k_T b_T) \tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F)$$

Need non-perturbative large b_T information for any value of $Q! \qquad Q = \mu$

What happened?

Is the log(Q) dependence sufficient? Choice of $g_2 \& b_*$ affects Q-dep. The "form factor" and b_* change perturbative results at small b_T !

Q-dependence of the "form" factor

Q-dependence of the "form factor" :

Konychev, Nadolsky, 2006

At Q ~ 1 GeV, $\ln(Q/Q_0)$ term may not be the dominant one! $\mathcal{F}^{NP} \approx b^2(a_1 + a_2 \ln(Q/Q_0) + a_3 \ln(x_A x_B) + ...) + ...$ Power correction? (Q₀/Q)ⁿ-term? Better fits for HERMES data?

"Predictions" for A_N of W-production at RHIC?

❑ Sivers Effect:

- Quantum correlation between the spin direction of colliding hadron and the preference of motion direction of its confined partons
- QCD Prediction: Sign change of Sivers function from SIDIS and DY

□ Current "prediction" and uncertainty of QCD evolution:

RHIC is the excellent and unique facility to test this (W/Z – DY)! But, should not be easy! Shower could dilute the spin correlation!

Hint of the sign change: A_N of W production

Data from STAR collaboration on A_N for W-production are consistent with a sign change between SIDIS and DY

STAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

Parton k_T at the hard collision

\Box Sources of parton k_T at the hard collision:

 \Box Large k_T generated by the shower (caused by the collision):

- Q²-dependence linear evolution equation of TMDs in b-space
- $\diamond\,$ The evolution kernels are perturbative at small b, but, not large b

The nonperturbative inputs at large b could impact TMDs at all Q²

□ Challenge: to extract the "true" parton's confined motion:

- Separation of perturbative shower contribution from nonperturbative hadron structure – not as simple as PDFs
- ♦ Role of lattice QCD? Task of the DOE supported TMD collaboration

PDFs, TMDs, GPDs, and hadron structure

□ What do we need to know for full hadron structure?

 \Rightarrow In theory: $\langle P,S|\mathcal{O}(\overline{\psi},\psi,A^{\mu})|P,S
angle$ – Hadronic matrix elements

with ALL possible operators: $\mathcal{O}(\overline{\psi},\psi,A^{\mu})$

- In fact: None of these matrix elements is a direct physical observable in QCD color confinement! need probes!!!
- In practice: Accessible hadron structure
 = hadron matrix elements of quarks and gluons, which
 - 1) can be related to physical cross sections of hadrons and leptons with controllable approximation factorization;
 - 2) can be calculated in lattice QCD

Multi-parton correlations – beyond single parton distributions:

Summary

TMDs, like PDFs, are NOT direct physical observables
 – could be defined differently

□ Knowledge of nonperturbative inputs at large b_T is crucial in determining the TMDs from fitting the data

QCD factorization is necessary for any controllable "probe" for hadron's quark-gluon structure!

□ JLab12, COMPASS, RHIC spin, ... will provide rich information on hadron structure via TMDs in years to come!

EIC is a ultimate QCD machine, and will provide answers to many of our questions on hadron structure, in particular, the confined transverse motions (TMDs), spatial distributions (GPDs), and multi-parton correlations, ...
See also talk by A. Deshpande

Thank you!

Backup slides

Evolution equations for TMDs

□ TMDs in the b-space:

J.C. Collins, in his book on QCD

□ Collins-Soper equation:

 $\tilde{K}(b_T;\mu) = \frac{1}{2} \frac{\partial}{\partial y_s} \ln\left(\frac{\tilde{S}(b_T;y_s,-\infty)}{\tilde{S}(b_T;+\infty,y_s)}\right)$

Renormalization of the soft-factor

$$\zeta_F = M_P^2 x^2 e^{2(y_P - y_s)}$$

Introduced to regulate the rapidity divergence of TMDs

RG equations:

$$\frac{d\tilde{K}(b_T;\mu)}{d\ln\mu} = -\gamma_K(g(\mu))$$

Wave function Renormalization

Evolution equations are only valid when $b_T \ll 1/\Lambda_{QCD}$!

Need information at large b_{T}

$$\frac{d\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{\mathrm{T}},S;\mu;\zeta_F)}{d\ln\mu} = \gamma_F(g(\mu);\zeta_F/\mu^2)\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{\mathrm{T}},S;\mu;\zeta_F)$$

 $\frac{\partial F_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu) \tilde{F}_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F)$

□ Momentum space TMDs:

$$F_{f/P^{\uparrow}}(x, \mathbf{k}_{\mathrm{T}}, S; \mu, \zeta_F) = \frac{1}{(2\pi)^2} \int d^2 \mathbf{b}_T \, e^{i\mathbf{k}_T \cdot \mathbf{b}_T} \, \tilde{F}_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu, \zeta_F)$$

Evolution equations for Sivers function

Sivers function:

Aybat, Collins, Qiu, Rogers, 2011

$$F_{f/P^{\uparrow}}(x,k_T,S;\mu,\zeta_F) = F_{f/P}(x,k_T;\mu,\zeta_F) - F_{1T}^{\perp f}(x,k_T;\mu,\zeta_F) \frac{\epsilon_{ij}k_T^i S^j}{M_p}$$

□ Collins-Soper equation:

$$\frac{\delta \ln \tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu)$$

□ RG equations:

 $-\tilde{-}i + f_{i}$

Its derivative obeys the CS equation

$$\tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F) \equiv \frac{\partial \tilde{F}_{1T}^{\perp f}(x, b_T; \mu, \zeta_F)}{\partial b_T}$$

□ Sivers function in momentum space:

$$F_{1T}^{\perp f}(x, k_T; \mu, \zeta_F) = \frac{-1}{2\pi k_T} \int_0^\infty db_T \, b_T J_1(k_T b_T) \tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F)$$

JI, Ma, Yuan, 2004 Idilbi, et al, 2004, Boer, 2001, 2009, Kang, Xiao, Yuan, 2011 Aybat, Prokudin, Rogers, 2012 Idilbi, et al, 2012, Sun, Yuan 2013, ...

Extrapolation to large b_T

Nonperturbative fitting functions

Various fits correspond to different choices for $g_{f/P}(x, b_T)$ and $g_K(b_T)$ e.g. $g_{f/P}(x, b_T) + g_K(b_T) \ln \frac{Q}{Q_0} \equiv -\left[g_1 + g_2 \ln \frac{Q}{2Q_0} + g_1 g_3 \ln(10x)\right] b_T^2$

Different choice of $g_2 \& b_*$ could lead to different over all Q-dependence!