Role Of The Delta Resonance In The Population Of A Four-particle State In The ⁵⁶Fe → ⁵⁴Fe Reaction

> Zsolt Podolyák University of Surrey

⁵⁶Fe beam at E/A=500 MeV.
⁵⁴Fe secondary beam stopped.
Isomeric decay detected with AGATA array.

-0s1/2

FIRST OBSERVATION OF THE Δ RESONANCE IN RELATIVISTIC HEAVY-ION CHARGE-EXCHANGE REACTIONS

${}^{56}\text{Fe} \rightarrow {}^{54}\text{Fe}$

Conclusions

The 10⁺ isomer in ⁵⁴Fe populated from ⁵⁶Fe at E/A=500 MeV The 10⁺ state is a four particle state 10⁺ populated mainly at negative momentum transfer

=> It is populated via the Δ resonance

Role of the Δ resonance in the population of a four-nucleon state in the ⁵⁶Fe \rightarrow ⁵⁴Fe reaction at relativistic energies

Zs. Podolyák,¹ C.M. Shand,¹ N. Lalović,^{2,3} J. Gerl,³ D. Rudolph,² T. Alexander,¹ P. Boutachkov,³ M.L. Cortés,^{3,4} M. Górska,³ I. Kojouharov,³ N. Kurz,³ C. Louchart,⁴ E. Merchán,⁴ C. Michelagnoli,⁵ R.M. Pérez-Vidal,⁶ S. Pietri,³ D. Ralet,^{4,3} M. Reese,⁴ H. Schaffner,³ Ch. Stahl,⁴ H. Weick,³ F. Ameil,³ G. de Angelis,⁷ T. Arici,^{3,8} R. Carroll,¹ Zs. Dombrádi,⁹ A. Gadea,⁶ P. Golubev,² M. Lettmann,⁴ C. Lizarazo,^{4,3} J. Mahboub,¹⁰ H. Pai,⁴ Z. Patel,¹ N. Pietralla,⁴ P.H. Regan,¹ L.G. Sarmiento,² O. Wieland,¹¹ E. Wilson,¹ B. Birkenbach,¹² B. Bruyneel,¹³ I. Burrows,¹⁴ L. Charles,¹⁵ E. Clément,⁵ F. C. L. Crespi,^{16,11} D.M. Cullen,¹⁷ P. Désesquelles,¹⁸ J. Eberth,¹² V. González,¹⁹ T. Habermann,^{4,3} L. Harkness-Brennan,²⁰ H. Hess,¹² D.S. Judson,²⁰ A. Jungclaus,²¹ W. Korten,¹³ M. Labiche,¹⁴ A. Maj,²² D. Mengoni,^{23,24} D. R. Napoli,⁷ A. Pullia,^{16,11} B. Quintana,²⁵ G. Rainovski,²⁶ P. Reiter,¹² M.D. Salsac,¹³ E. Sanchis,¹⁹ and J.J. Valiente Dóbon⁷

PRESPEC-AGATA campaign

END

PHYSICAL REVIEW C 70, 064608 (2004)

FIG. 8. Total charge-pickup cross section as a function of the projectile energy per nucleon: open triangles, ${}^{197}Au + {}^{1}H$ [11]; full dot, ${}^{197}Au + {}^{1}H$ [25]; full square, ${}^{208}Pb + {}^{1}H$ from the present work; and open dots, ${}^{197}Au + {}^{1}H$ [9]. The data from Refs. [9,11] were extracted from measurements performed with CH₂ and C targets.

D. Rudolph et al., Phys. Rev. C78, 021301(R) (2008).

Dominant configurations