ADVANCES IN NUCLEAR STRUCTURE FROM PHOTONUCLEAR REACTIONS

Norbert Pietralla IKP, TU Darmstadt

Situation with γ facilities

S-DALINAC, TU Darmstadt

1.1.2016 – 31.12.2019 A.Schwenk et al.

HlγS, Duke Univ., 2001-

ELI-NP, Bucharest, 2018-

12.09.2016 | INPC 2016, Adelaide | "Advances in Photonuclear Reactions" | Prof. Dr. Norbert Pietralla | IKP, TU Darmstadt, Germany | 3

Outline

- Recent Advances on Nuclear Dipole Modes
 - E1 Pygmy Dipole Resonance
 - Is the PDR a valence-neutron mode?
 - M1 Scissors Mode
 - What is the E2-collectivity of the Sc.M.?
- Recent Advances on Nuclear γ-Decay
 - γγ/γ, Competitive Double-Gamma Decay

Outlook and Summary

H.Pai, P.Ries, U.Gayer, V.Werner

1. E1 Strength and Pygmy Dipole Resonance

PDR = "Enhanced electric dipole strength below and around neutron separation threshold"

Pygmy Dipole Resonance - Overview

Darmstadt High Intensity Photon Setup

K.Sonnabend et al., NIM A 640, 6 (2011).

Bremsstrahlung γ spectrum provided by S-DALINAC

Order of multipole from angular distribution

Chromium Isotopes - Spectra @ DHIPS

TECHNISCHE

UNIVERSITÄT DARMSTADT

Chromium Isotopes - High Energy

Reduced Transition Strength

TECHNISCHE UNIVERSITÄT DARMSTADT

Parity Measurement @ HIγS

parity from asymmetry ϵ of count rate between detector plains

Effect of *pf*-valence neutrons

Significant increase of transition strength beyond shell-closure Evidence for valence-neutron character of PDR (?)

50Mn 283.29 MS <: 100.00%	51Mn 46.2 M 4 100.00%	52Mn 5.591 D c: 100.00%	53Mn 3.74E+6 Y <: 100.00%	54Mn 312.12 D ε: 100.00% β- = 2.9E-4%	55Mn STABLE 100%	56Mn 2.5789 H β-: 100.00%
49 Cr 42.3 M <: 100.00%	50Cr >1.3E+18 Y 4.345% 24	51Cr 27.7025 D e: 100.00%	52Cr STABLE 83.789%	53Cr STABLE 9.501%	54Cr STABLE 2.365%	55Cr 3.497 Μ β-: 100.00%
48V 15.9735 D <: 100.00%	49¥ 329 D « 100.00%	50V 1.4E+17 Y 0.250% «: 83.00% β-: 17.00%	51¥ STABLE 99.750%	52V 3.743 M β-: 100.00%	58¥ 1.60 M β-: 100.00%	54V 49.8 S β-: 100.00%

Effect of *pf*-valence neutrons

Significant increase of transition strength beyond shell-closure Evidence for valence-neutron character of PDR (?) \rightarrow contributes to dipole polarizability $a_D \propto \sum rac{\langle 0^+_{gs} || \mathbf{E1} || 1^-_n
angle \langle 1^-_n || \mathbf{E1} || 0^+_{gs}
angle}{E_n}$ \rightarrow Correlation to density dependence of symmetry energy in nuclear EoS

 \rightarrow Radius of Neutron Stars

2. Collectivity of the M1 scissors mode

Prediction: 1978 in **TRM** by Lo ludice and Palumbo 1981 in **IBM-2** by lachello

<u>Observation:</u> 1983 by Richter *et al.* in (e,e') at the DALINAC 1984 by Berg *et al.* in (γ, γ') at Stuttgart Dynamitron

Systematics:

<u>Target:</u> ${}^{156}\text{Gd}_2\text{O}_3$ with 10 g of ${}^{156}\text{Gd}$, enrichment of 93.79 %

<u>Beam:</u>

Energy: 3.07(7) MeV,

Duration: ≈ 52.8 h

TECHNISCHE

UNIVERSITÄT DARMSTADT

- close geometry
- high flexibility due to interchangeability

 $^{156}\mathrm{Gd}(\vec{\gamma},\gamma')$ O Angular distribution of $1^+_{sc} \rightarrow 2^+_1$ Counts per 0.8 keV at $\theta = 135^{\circ}$ $1^+_{sc\ 1} \to 2^+_1$ $1^+_{sc,1} \rightarrow 0^+_1$ ^{13}C A $^{156}\mathrm{Gd}(\vec{\gamma},\gamma')$ Counts per 0.8 keV $0^+ \xrightarrow{\vec{\gamma}} 1_{sc}^+ \xrightarrow{M1} 2_1^+$ $0^+ \xrightarrow{\vec{\gamma}} 1_{sc}^+ \xrightarrow{E2} 2_1^+$ Energy [keV]

Determination of the multipole mixing ratio

Determination of the multipole mixing ratio

$$\delta_{1\to 2} = \frac{\sqrt{3}}{10} \frac{E_{\gamma}}{\hbar c} \frac{\langle 2_1^+ \| \hat{T}(E2) \| 1_{sc}^+ \rangle}{\langle 2_1^+ \| \hat{T}(M1) \| 1_{sc}^+ \rangle}$$

Effective boson charges from *F*-vector *E*2 transitions in a deformed nucleus

Multipole mixing ratio determines F-vector E2 transition strength

First information on an *F*-vector *E*2 transition in an axially-deformed nucleus!

Enables the determination of local values of the effective boson charges e_{π} and e_{ν} for *E*2 transitions in the IBM-2.

*E*² transition operator:

$$T(E2) = e_\pi Q_\pi^{\chi_\pi} + e_\nu Q_\nu^{\chi_\nu}$$

 $B(E2; 1_{sc}^+ \to 2_1^+) = 0.027(11)$ W.u.

156**Gd**

Effective boson charges from *F*-vector *E*2 transitions

Relation to E2 boson charges in the F-spin limit of the IBM-2 SU(3) d.s.l.

$$B(E2; 1_{\rm sc}^+ \to 2_1^+) = (e_{\nu} - e_{\pi})^2 \cdot f(N_{\nu}, N_{\pi})$$

$$B(E2; 2_1^+ \to 0_1^+) = (e_{\nu}N_{\nu} + e_{\pi}N_{\pi})^2 \cdot g(N)$$

van Isacker et al., Ann. Phys. 171 (1986) 253

Local values for effective boson charges: $e_{\pi} = 0.126(1) \ eb$ $e_{\nu} = 0.113(2) \ eb$

3. Double-Gamma Decay

First order radioactive decay processes:

Radioactive decay: Second order

double β -decay $2\nu\beta\beta$ ($0\nu\beta\beta$)

first evidence in the laboratory: S. Elliot, A. Hahn, and M. Moe, PRL **59**, 2020 (1987)

competitive double γ -decay $\gamma\gamma/\gamma$

competitive double-gamma decay has not been observed until 2014

$$\text{M.E.} = \langle f | \hat{O}(2) \hat{O}(1) | i \rangle = \sum \langle f | \hat{O}(2) | n \rangle \langle n | \hat{O}(1) | i \rangle$$

The double-gamma decay

First discussed by Maria Göppert-Mayer in her doctoral thesis in 1930

M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen (1930)

The double-gamma decay

First discussed by Maria Göppert-Mayer in her doctoral thesis in 1930

M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen (1930)

Second order process (10⁻⁶ weaker)

- $E_0 = E_1 + E_2$
- E1, E2 are continuous

well studied in atomic physics

•M. Lipes et al., PRL 15, 690 (1965)
•P.H. Mokler et al., Phys. Scr. 69, C1 (2004)
•K. Ilakovac et al., Rad. Phys. Chem. 75, 1451 (2006)

The double-gamma decay in nuclear physics

 $\gamma\gamma$ -decay only known in a special case:

 $0^+ \rightarrow 0^+ ({}^{90}Zr, {}^{40}Ca, {}^{16}O)$

•J. Schirmer et al., PRL 53, 1897 (1984)

•J. Kramp et al., NPA 474, 412 (1987)

never observed in competition to allowed single γ-transition

•W. Beusch et al., Helv Phys. Acta 33, 363 (1960)
•J. Kramp et al., NPA 474, 412 (1987)
•V.K. Basenko et al., Bull. Russ. Acad. 56, 94 (1992)
•C.J. Lister et al., Bull. Am. Phys. Soc. 58(13), DNP.CE. 3 (2013)

main experimental obstacle:

•presence of the one-photon decay

- Study 662-keV transition in ¹³⁷Ba
- use radioactive ¹³⁷Cs -source

Decay scheme of ¹³⁷Cs

TECHNISCHE Matrix element of the double-gamma decay INIVERSITÄT DARMSTADT ¹³⁷Ba $\frac{\mathrm{d}\Gamma^2_{\gamma\gamma}}{\mathrm{d}\omega\mathrm{d}\cos\theta}(\alpha_{oo'},\ldots)$ $7/2^{+}$ $5/2^{+}$ $7/2^{+}$ M2 $\alpha_{oo'} = \sum \frac{\langle f || \mathbf{O} || n \rangle \cdot \langle n || \mathbf{O}' || i \rangle}{F_{n}}$ 11/2E2 M4 $\alpha_{M2E2} = \frac{\langle 3/2^+ ||\mathbf{E2}||7/2^+ \rangle \cdot \langle 7/2^+ ||\mathbf{M2}||11/2^- \rangle}{E_{7/2^+}} + \dots$ $3/2^{+}$

Basic principle of the experiment

•use radioative ¹³⁷Cs -source: 16.3(5)µCi

- background ↔ small decay probability (~1 event per day)
 - direct Compton scattering
 - random coincidences
 - cosmic rays, sequential Compton scattering, internal radioactivity

The experimental setup & direct Comption scattering

- 72°: 5 detector pairs
- 144°: 5 detector pairs
- E₁ + E₂ = 662 keV
- Compton scattering

double-gamma decay

- $\epsilon_{abs} = 1.50(5)\%$
- measurement time: 1273 h

Time spectrum & random coincidences

Time spectrum & random coincidences

Results

Observation of the competitive double-gamma nuclear decay

C. Walz¹, H. Scheit¹, N. Pietralla¹, T. Aumann¹, R. Lefol^{1,2} & V. Yu. Ponomarev¹

Result: Successful observation of the competitive double-gamma decay

Timing analysis

Results

Results & comparison to QPM

	exp	QPM
$\Gamma_{\gamma\gamma}/\Gamma_{\gamma}(10^{-6})$	2.1(3)	2.69
$lpha_{M2E2}(rac{e^2 fm^4}{MeV})$	+38.2(36)	+42.6
$\alpha_{\text{E3M1}}(rac{e^2 fm^4}{MeV})$	+7.4(38)	+9.5

- $\gamma\gamma/\gamma$ branching ratio: ~ 10⁻⁶
- α_{M2E2} dominates
- relative sign between \(\alpha_{M2E2}\) and \(\alpha_{E3M1}\) is positive
- good description in the framework of the QPM

Electric dipole polarizability ↔ matrix element of the double-gamma decay

- similar structure of a_D and α_{E1E1}
- α_{E1E1} alternative quantity?
- a_D requires measurement of *E*1-strengths over wide energy range (difficult) $\iff \alpha_{E1E1}$ accessible through one electromagnetic transition

Summary

Complementary Information

Darmstadt High Intensity Photon Setup

P. Ries master these, TU Darmstadt, 2015

TECHNISCHE

INIVERSITÄT DARMSTADT

Pol

Det 2

The *F*-spin quantum number in the IBM-2

Mixed Symmetry States (MSSs) need the distinction of neutron and proton degrees of freedom! sd-IBM-2 Classification of πv -symmetry: *F*-spin quantum number Arima et al., Phys. Lett. B 66 (1977) 205 γ-soft Otsuka et al., Nucl. Phys. A 309 (1978) 1 O(6)lachello, Phys. Rev. Lett. 53 (1984) 1427 van Isacker et al., Ann. Phys. 171 (1986) 253 $F = F_{max} = \frac{1}{2}(N_{\pi} + N_{\nu})$ fully symmetric Deformed $F = F_{max} - 1$ mixed symmetric Spherical U(5) SU(3) Prolate Rotor Vibrator

12.09.2016 | INPC 2016, Adelaide | "Advances in Photonuclear Reactions" | Prof. Dr. Norbert Pietralla | IKP, TU Darmstadt, Germany | 47

Objectives

- Observation of the "competitive double-gamma decay" ($\gamma\gamma/\gamma$)
- Measurement of the energy distribution and γγ-angular correlation
- Determination of the multipole order and radiation character

•Determination of $\gamma\gamma/\gamma$ - branching ratio $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}$:

$$\Gamma_{\gamma\gamma}/\Gamma_{\gamma}(\theta) = \Gamma_{\gamma\gamma}/\Gamma_{\gamma} \cdot W(\theta)$$

The experimental setup & direct Comption scattering

- 72°: 5 detector pairs
- 144°: 5 detector pairs

The experimental setup & direct Comption scattering

- 72°: 5 detector pairs
- 144°: 5 detector pairs
- E₁ + E₂ = 662 keV
- Compton scattering

double-gamma decay

Timing spectrum & random coincidences

Time spectrum & random coincidences

Results

Result: Successful observation of the competitive double-gamma decay

Critical analysis (1)

Critical analysis (1)

Critical analysis (1)

Critical analysis (2)

Outline

- Double-gamma decay
- Experiment
- Data analysis & results
 - First $\gamma\gamma/\gamma$ branching ratio
 - Multipole analysis
- Summary

Objectives

- Observation of the "competitive double-gamma decay"
- Measurement of the energy sharing and angular distributions
- Determination of the multipole order and radiation character
- Determination of $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}$: $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}(\theta) = \Gamma_{\gamma\gamma}/\Gamma_{\gamma} \cdot W(\theta)$

Results

- A_{qq}, A_{od} and A_x exhibit characteristic dependence on ω and θ
- Fit both distributions simultaneously to determine α_{M2E2} and α_{E3M1}

Summary

- Observation of the competetive double-gamma decay
- Measurement of the energy sharing and angular distributions
- Branching ratio: $\Gamma_{\gamma\gamma}/\Gamma_{\gamma} = 2.1(3) \cdot 10^{-6}$ (in ¹³⁷Ba)
- Determination of the matrix elements a_{E2M2} and a_{E3M1}
- M2E2-decay paths through 7/2⁺ states dominate
 - Formally similar to E1 polarizability / $0\nu\beta\beta$ NME
 - Related to Symmetry Parameter of Nuclear EoS ?

• Access to aspects of NME for 0vββ - decay ? 12.09.2016 | INPC 2016, Adelaide | "Advances in Photonuclear Reactions" | Prof. Dr. Norbert Pietralla | IKP, TU Darmstadt, Germany