Impact of pairing correlations on the chemical composition of the inner crust of a neutron star

A. Pastore, M.Shelley, C. Diget

Department of Physics, University of York, Heslington, York, YO10 5DD, UK

September 13, 2016

(中) (종) (종) (종) (종) (종)

Neutron Stars

Several neutron stars detected in the universe

Vela Nebula

- 10⁴ years ago explosion
- Rotating neutron star (pulsar)
- Radius \approx 10 Km
- Density $\approx 5 10\rho_0$ ($\rho_0 \rightarrow$ density of a nucleus)

The crust of a Neutron Star (pprox 0.5 - 1 Km)

The structure evolves with the density

[N. Chamel, P. Haensel , http://www.livingreviews.org/lrr-2008-10]

- Neutron crust $\rho < \rho_0$
- Crystalline structure: isolated nuclei, nuclei+neutron gas

A.Pastore

Inner crust of neutron star

Isolated nuclei in a crystalline structure surrounded by neutron gas

Interesting aspects

- Nucleus-gas interaction
- Neutron superfluidity
- Thermal evolution

A.Pastore

How to determine the chemical composition?

Approximations

- Spherical cells \rightarrow Wigner Seitz (WS) cells
- Non-interacting WS cells
- Uniform *e* distribution

We need to minimise the energy

$$E = Z(m_p + m_e) + (N - A)m_n + E_{Nuclear} + K_e + E_L$$

- *E*_{nuclear}: nuclear binding energy
- *K_e* electron kinetic energy (ultra-relativistic)
- E_L lattice energy

How to calculate $E_{nuclear}$

Nuclear physics input \rightarrow calculate $E_{\it nuclear}$ for a wide range of densities, asymmetries and temperatures.

Semiclassical methods

Extended Thomas-Fermi+ BCS pairing (protons)

[N. Chamel, J.M. Pearson, A.P. and S. Goriely; Phys.Rev. C 91, 018801 (2015)]

- Proton pairing \rightarrow small shift on energy minima, smaller differences between minima (more mixing?)
- No spurious *Box-effects*
- Shell effects \rightarrow Strutinsky correction
- No neutron pairing

Force	$\bar{n}_{\rm drip}~({\rm fm}^{-3})$	Z	N	$e \; ({\rm MeV})$	$P (MeV fm^{-3})$
BSk19	2.63464×10^{-4}	40 (38)	96 (88)	-1.79426 (-1.87464)	$5.072 \times 10^{-4} (4.938 \times 10^{-4})$
BSk20	2.62873×10^{-4}	40 (38)	95 (88)	-1.79451 (-1.87305)	$5.064 \times 10^{-4} (4.923 \times 10^{-4})$
BSK21	2.57541×10^{-4}	40 (38)	94 (86)	-1.81718 (-1.90057)	$4.984 \times 10^{-4} (4.894 \times 10^{-4})$
SLy4	2.45897×10^{-4}	40 (38)	93 (82)	-1.78801 (-1.95898)	$4.744 \times 10^{-4} (4.807 \times 10^{-4})$

[J. M. Pearson et. ; Phys. Rev. C 85, 065803 (2012)]

Some problems at the drip-line....

Inconsistent treatment at the drip-line: HFB vs Semi-classic (same interaction!)

DFT models

Solve HFB equations in a WS cell

$$\begin{split} &\sum_{n'} (h_{n'nlj}^{q} - \mu_{F,q}) U_{n'lj}^{i,q} + \sum_{n'} \Delta_{nn'lj}^{q} V_{n'lj}^{i,q} = E_{ilj}^{q} U_{nlj}^{i,q} \\ &\sum_{n'} \Delta_{nn'lj}^{q} U_{n'lj}^{i,q} - \sum_{n'} (h_{n'nlj}^{q} - \mu_{F,q}) V_{n'lj}^{i,q} = E_{ilj}^{q} V_{nlj}^{i,q} \end{split}$$

- Microscopic functionals + pairing (no approx.)
- Boundary conditions \rightarrow continuum effects

$$u_{l \rightarrow \text{even}}(R_{Box}) = 0; \quad u'_{l \rightarrow \text{odd}}(R_{Box}) = 0$$

 $u'_{l \rightarrow \text{even}}(R_{Box}) = 0; \quad u_{l \rightarrow \text{odd}}(R_{Box}) = 0$

No assumption on density shapes

Boundary conditions I

[M. Baldo et al. Nucl. Phys. A775, 235-244 (2006)]

Boundary conditions II

Compare E/A in pure neutron matter and in a box at same k_F

We need large boxes!

- We solve HFB equations in a large box $R_b = 80$ fm
- Approx. constant error $7 \text{keV}/\text{particle} \rightarrow \text{constant shift}$
- Long CPU time....

A.Pastore

- Emulate unknown outputs of a simulation
- Use Bayesian inference (i.e. not the same as basic interpolation)
- Probability of output being in certain region is also used by emulator
- Outputs of simulation are expected to vary smoothly with simulation inputs
- Outputs are modelled as a random Gaussian process in parameter space defined by simulation inputs
- In 1D, works by fitting set of polynomials to simulation output

- Want to make the most of output expensive computer simulation
- Hopefully will produce same effect as decreasing grid size/ increasing size of basis set
- GPEs can be used for higher-dimensional problems, e.g. 2D potential energy surface for fission
- May be very useful if not working on equally-spaced grids (e.g. zeroes of Hermite polynomials)

Conclusions

- Pairing correlations impact chemical composition
- $\bullet~\mbox{Strong shell effects} \to \mbox{Need microscopic description}$
- Very difficult problem to solve

GPE methods

Advanced GPE methods \rightarrow make the problem solvable with controlled approximations.

Perspectives

- Full HFB treatment (no *ad hoc* corrections)
- Very large boxes \rightarrow better treatment of continuum
- Reduced CPU time \rightarrow GPE