Neutron star structure explored with a family of unified equations of state of neutron star matter

Kazuhiro Oyamatsu¹⁾, Hajime Sotani²⁾ and Kei lida³⁾ 1) Aichi Shukutoku University, 2) National Astronomical Observatory of Japan, 3) Kochi University

International Nuclear Physics Conference, Adelaide Convention Center, Australia, 11-16 September, 2016

Oyamatsu-lida (OI) unified EOS family Unified EOS family which covers from laboratory nuclei to

- neutron star matter
- of symmetry energy L
- supernova matter)

 Each EOS is labeled with the empirical uncertain saturation parameters: the incompressibility K₀, and the density gradient

• A simplified Thomas-Fermi model description of nuclei (the same method as popular Shen EOS (NPA1998,2011) for

Saturation parameters and auxiliary empirical constraint

Energy per nucleon of nearly symmetric nuclear matter

$$w(n, x) \approx w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + (1 - 2x)^2 \left[S_0 + \frac{L}{3n_0}(n - n_0)^2\right]$$

 n_0 : nuclear density, w_0 :saturation energy, K_0 : incompressibility

 S_0 : symmetry energy at n=n₀, L: its density derivative coefficient

Symmetry energy S₀ and its density gradient L $S_0 = S(n_0) \qquad \qquad L = \left. \frac{dS(n)}{dn} \right|_{L=0}$ $n=n_0$ Saturation point of asymmetric matter $(x \approx 0.5)$ $n_s = n_0 - \frac{3n_0L}{K_0}\alpha^2$ $w_s = w_0 + S_0\alpha^2$ $\alpha = 1 - 2x$ slope of saturation curve $e \\ y = -\frac{S_0 K_0}{3n_0 L}$ Auxiliary empirical constraint $-1800 \le y \le -200$

Adopted macroscopic model

Energy per cell (or Energy of a nucleus)

$$W = \int_{cell} dr \left[\frac{\varepsilon_0(n_n, n_p) + m_n n_n + m_p n_p}{1 + \int_{cell} dr F_0} \right] \nabla n_i \left[\frac{\nabla n_i}{1 + (electron kinetic energy)} + (Coulomb) \right]$$

$$= n_{electron} (n_{electron}) + (n_{e$$

 $n_{\rm n}$ ($n_{\rm p}$) : local neutron (proton) density,

 $\epsilon_0(n_n, n_p)$: EOS of uniform nuclear matter (energy density)

 F_0 : surafce energy parameter

Pa

$$\varepsilon_{0}\left(n_{n}, n_{p}\right) = \frac{3}{5}\left(3\pi^{2}\right)^{2/3}\left(\frac{\hbar^{2}}{2m_{n}}n_{n}^{5/3} + \frac{\hbar^{2}}{2m_{p}}n_{p}^{5/3}\right) + \left[1 - \left(1 - 2Y_{p}\right)^{2}\right]V_{s}(n) + \left(1 - 2Y_{p}\right)^{2}V_{n}(n)$$

Fermi kinetic energy density

potential energy densities of symmetric and neutron matter

$$V_s(n) = a_1 n^2 + \frac{a_2 n^3}{1 + a_3 n}$$
 $V_n(n) = b_1 n^2 + \frac{b_2 n^3}{1 + b_3 n}$

 \star very flexible function form: a_3 can vary K₀ widely. (better than Skyrme)

The function can be fitted to SIII and TM1 EOS very well.

n=nn+np : total density

potential energy density

 $\star a_1 \sim b_2$ and F_0 : masses and radii of stable nuclei ($b_3=1.59$ fm³, a fit to FP EOS)

Simplified Thomas-Fermi calculation

neutron (proton) density distribution n_n (n_p) $n_{i}(r) = \begin{cases} \left(n_{i}^{in} - n_{i}^{out}\right) \left[1 - \left(\frac{r}{R_{i}}\right)^{t_{i}}\right]^{3} + n_{i}^{out} & r < R_{i} \\ n_{i}^{out} & r < R_{i} \\ 0.00 \\ \frac{N_{i}^{out}}{9} & 0.00 \\ 0.$ $R_n(R_p)$: neutron (proton) radius parameter $t_n(t_p)$: neutron (proton) surface thickness parameter n;ⁱⁿ : central density n_n^{out} : neutron gas density $(n_p^{out}=0)$

The values of parameters $a_1 \sim b_3(EOS)$ and F_0 are determined

= about 200 sets of empirical EOS+F₀

energy minimization with respect to parameters of $n_n(r)$ and $n_p(r)$ (and lattice constant)

to fit masses and radii of stable nuclei.

EOS parameters and liquid drop mass formula

	OI EOS	saturation parameters	liquid drop mass formula
symmetric matter	aı, a2, a3	no, wo, Ko	a _v (volume) => w ₀ a _c (Coulomb) => n ₀
Symmetry energy neutron matter	b1, b2, b3(=1.59)	So, L Wn0, L (, Kn0)	a _i (symmetry)
surface	Fo	(F ₀)	as (surafce)
K ₀ and L are not constrained well from nuclear masses.			

are not constrained well from nuclear masses. => Each OI EOS is labeled with (K_0 , L).

Saturation parameters of OI EOS family Values of n₀, w₀ and F₀ are almost constant. They have slight K₀ dependence

neutron rich nuclei in laboratory

mass, radius and neutron skin are sensitive to L but not to K_0 .

Oyamatsu and Iida, PRC81, 054302, 2010.

neutron and proton drip lines

Oyamatsu, lida and H. Koura, PRC 82, 027301, 2010.

neutron star crust

nuclei in neutron-star crusts

neutron drip poit (NDP)

onset density of neutron drip bundary of outer and inner crust

6x10¹¹ neutron drip point (g/cm³) 3 2 160 120 140 20 60 100 40 80 L (MeV)

NDP slightly increases with L.

Inner crust nuclei

For large L, S(n) at $n < n_0$ is small so that nuclei become more neutron-rich.

Z and Yp decrrease with L.

crust-core boundary density decrease with L.

spherical nuclei and pasta nuclei

Existence of pasta nuclei depends on the EOS.

Neutron star mass

Neutron Star with typical EOS's

The neutron star mass increases with L, and also with K₀. EOS's G and H (smallest L) can't support a neutron star.

Incompressibility of neutron matter $K_{n0} > 0$, then L> 20 MeV.

Mass and radius of max Mg neutron Star with OI EOS family

 $> 20 \text{ MeV from } K_{n0} > 0.$ EOS's with L > 40 MeV can support 1.4 solar mass star.

Summary

- OI EOS family describes the structure of neutron rich nuclei and neutron stars as function of (K_0 , L) related to nuclear compressibility.
- The structure of neutron rich nuclei and neutron star crusts are mainly dominated by L.
 - This is the result of nuclear saturation properties.
- · The neutron star mass and radius increase with L and also with K_0 .*
 - · This depends on the behavior of high density EOS ($b_3=1.59$).

* For low mass neutron stars.

- see Sotani, lida, Oyamatsu and Ohnishi, Prog. Theor. Exp. Phys. (2014) 051E01.

NEXT : High Density => Oyamatsu-Sotani-lida EOS family

- potential energy density.
- · Each EOS is labeled with (K_0 , L, b_3).
- · Values of saturation parameters are almost the same as OI EOS's ($b_3=1.59$).
 - · L > 20 MeV from K_{n0} >0 independently of b_3 .

· The choice of b_3 value does not affect nuclei and crusts very much but will alter core structure.

· Empirical description of high density EOS using different value for 3 body energy coefficient b_3 in the

$$v_n(n) = b_1 n^2 + \frac{b_2 n^3}{1 + b_3 n}$$

