DEFORMED STRUCTURES AND SHAPE COEXISTENCE IN ⁹⁸ZR

Bruno Olaizola University of Guelph, ON, Canada

INPC2016 – Adelaide, Australia 12 September 2016

Overview

- Shape coexistence in Zr isotopes
- High-statistics experiment of the decay of ⁹⁸Y to ⁹⁸Zr
- Experiment run with 8pi@TRIUMF
- Expanded level scheme
- Re-measured conversion electrons
- Precise measurement key branching ratios
- Propose new band structure

NUCLEAR SHAPE COEXISTENCE

- Shape coexistence is denoted by a near degeneracy of different shapes
- States at similar excitation energy exhibit different intrinsic deformation
- It is believed to happen in all but the lightest nuclei

Potential energy surface for ¹⁸⁶Pb with a spherical, oblate and prolate minima (Andreyev et al. Nature 2000).

SHAPE COEXISTENCE IN THE A~100 REGION

z	94Ru	95Ru	96Ru	97Ru	98Ru	99Ru	100Ru	101Ru	102Ru	103Ru	104Ru	105Ru	106Ru	107Ru	108Ru	109Ru	110Ru
	93T	1=	50	96Tc	97Tc	98Tc	99Tc	100Tc	101Tc	102Tc	103Tc	104Te	105Tc	106Tc	107Tc	108Tc	109Tc
42	92Mo	93Mo	94Mo	95Mo	96Mo	97 M o	98Mo	99Mo	100 M o	101 M o	102 M o	103 M o	104 M o	105 M o	106Mo	107 M o	108Mo
	91Nb	92Nb	93Nb	94Nb	95Nb	96Nb	97Nb	98Nb	99Nb	100Nb	101Nb	102Nb	103Nb	104Nb	105Nb	106Nb	107Nb
40	90Zr	91Zr	92Zr	93Zr	94Zr	95Zr	962r	972	98Zr	792r	100Zr	101Zr	102Zr	۳Z	=4	0	106Zr
	89Y	90¥	91Y	92Y	93Y	94Y	95Y	96Y	YTT	98Y	99Y	100Y	101Y	102Y	103Y	104Y	105Y
38	885r	895r	90Sr	91 Sr	925r	93Sr	94Sr	95Sr	96Sr	97Sr	98Sr	99Sr	100\$r	101 Sr	102Sr	103Sr	104Sr
	87Rb	88Rb	89Rb	90Rb	91Rb	92Rb	93Rb	94Rb	95Rb	96Rb	97Rb	98Rb	99Rb	100Rb	101Rb	102Rb	103Rb
36	86Kr	87Kr	88Kr	89Kr	90Kr	91Kr	92Kr	93Kr	94Kr	95Kr	96Kr	97Kr	98Kr	99Kr	100Kr	101Kr	
	50		52		54	1	56		58		60		62		64		N

⁹⁸Zr

 $1s - 1s_{1/2} 2 2$

SHAPE COEXISTENCE IN THE A~100 REGION

HYPOTHETICAL CONFIGURATION INVERSION

Previous shell model calculations suggest that this sudden increase of deformation is caused by an inversion of the band structure

Very recent calculations suggest that is a quantum phase transition based on the $g_{9/2}$ occupation

Quantum Phase Transition in the Shape of Zr isotopes, Togashi *et al. arXiv:*1606.09056v2

R.k. Sheline PLB41 (115)

ISAC@TRIUMF

- 500-MeV protons impacting on an UC_x target
- Isotopes are surface (Re) ionized
- A=98 mass is selected by the mass separator
- lons are implanted in an aluminized mylar tape

BETA DECAY OF ⁹⁸Y

z	94Ru	95Ru	96Ru	97Ru	98Ru	99Ru	100Ru	101Ru	102Ru	103Ru	104Ru	105Ru	106Ru	107Ru	108Ru	109Ru	110Ru
	931	1=	50	96Tc	97Tc	98Tc	99Tc	100Tc	101Te	102Te	103Tc	104Te	105Te	106Tc	107Te	108Tc	109Te
42	92Mo	93Mo	94Mo	95Mo	96Mo	97Mo	98Mo	99Mo	100 M o	101 M o	102 M o	103 M o	104 M o	105 M o	106 M o	107 M o	108 M o
	91Nb	92Nb	93Nb	94Nb	95Nb	96Nb	97Nb	98Nb	99Nb	100Nb	101Nb	102 N b	103Nb	104Nb	105Nb	106Nb	107Nb
40	90Zr	91Zr	92Zr	93Zr	94Zr	95Zr	96Zr	972.	98Zr	99Zr	100Zr	1012r	102Zr	*°Z	=4	0	1062r
	89Y	90Y	91Y	92Y	93Y	94Y	95Y	96Y	971	98Y	99Y	100Y	1017	102Y	103Y	104Y	105Y
38	885r	895r	90Sr	91 Sr	925r	93Sr	94Sr	95Sr	96Sr	97 Sr	85r	195r	100\$r	101 Sr	102Sr	103Sr	104Sr
	87Rb	88Rb	89Rb	90Rb	91Rb	92Rb	93Rb	94Rb	95Rb	96Rb	FIRE	SSRb	99Rb	100Rb	101Rb	102Rb	103Rb
36	86Kr	87K1	88Kr	89Kr	90Kr	91Kr	92Kr	93Kr	94Kr	95Kr	96Kr	97KI	98Kr	99Kr	100Kr	101Kr	
	50		52		54		58		58		60		62		64		N

- 98 Rb (T_{1/2}=114 ms) and 98 Sr (T_{1/2}=653 ms) ion beam
- Production yield of the order of $\sim 10^6$ ions/sec
- No significant amount of 98 Y (T_{1/2}=548 ms, J^{π}=(0)⁻) or 98m Y (T_{1/2}=2.0 s, J^{π}=(4,5)) was observed on the beam

8π SPECTROMETER AT TRIUMF

8pi array:

- 20 HPGe γ-ray detectors
- BGO Compton suppression shields
- ~2% absolute efficiency @1.3MeV

PACES array: 5 Si(Li) LN₂ cooled conversion electron detectors

COINCIDENCE ANALYSIS

Time-random-background subtracted β - γ - γ coincidence matrix contains ~3.5 10⁸ events

No isomeric decay has been observed

CONVERSION ELECTRONS

Conversion electron energy spectra detects in single PACES events

Previous level scheme

Previous level scheme of ⁹⁸Zr populated in the β^- decay of ⁹⁸Y (T_{1/2}=548 ms, Jⁿ=(0)⁻)

Preliminary new level scheme

- Scheme extended up to ~5.5 MeV
- ~50 levels, ~20 not previously seen in β decay and another ~20 completely new
- Three levels removed from the level scheme
- ~120 transitions placed, ~70 of them new

Relative intensities

⁹⁸Zr bands in literature

Bands, energies and intensities are from NNDC

Relative B(E2) from this work

W. Urban et al., Nucl. Phys. A 689, 605 (2001)

Rotational band E4/E2~3.2

Conclusions

- Preliminary high-statistics study of the ⁹⁸Y β⁻ decay
- Expanded the ⁹⁸Zr level scheme
 - ~20 new levels
 - ~70 new transitions
- Re-measured conversion electrons
- Branching ratios in key transitions
- Proposed a tentative new deformed band
- Ongoing work:
 - More relative B(E2) to be calculated
 - Construct a band on the O⁺₄
 - Search for negative parity states

ACKNOWLEDGEMENTS

P. Garrett, , V. Bildstein, G. A. Demand, A. Diaz Varela, Z. Fairchild, A. Finlay, B. Jigmeddorj, J. Michletti-Wilson, E. McGee, B. Hadinia, L. Bianco, J. Wong, S. Chagnon-Lessard, R. Dunlop, P. Finlay, A. Laffoley, K.G. Leach, A. Radich, E. Rand, C. E. Svensson UNIVERSITY OF GUELPH

G. Ball, P. C. Bender, A.B. Garnsworthy, G. Hackman, S. Ketelhut, R. Kruecken, M. M. Rajabali TRIUMF

C. Andreoiu, K. Starosta, D. S. Cross SIMON FRASER UNIVERSITY

J.L. Wood GEORGIA INSTITUTE OF TECHNOLOGY

S.W. Yates, E. Peters, F. M. Prados UNIVERSITY OF KENTUCKY

Previous level scheme

Most of the previous level scheme has been confirmed, but these three states were not observed

6⁺ candidates

Rotational band E4/E2~3.2, E6/E4~1.9

- This new branching ratio for the $2^{+}_{1} \rightarrow 0^{+}_{2}$ transition, yields B(E2)> 5 W.u.
- Assuming B(E2; $2^+_1 \rightarrow 0^+_1$)~ 1 W.u., a B(E2)~10 W.u. can be expected
- Calculations predict a $T_{1/2}(2_1^+) = 3-5$ ps (shell model), 0.6 ps (IBM), 0.2 ps (VAMPIR)
- This would imply B(E2; $2^+_1 \rightarrow 0^+_2$)= 12-300 W,u. and a high collectivity

(Shell model) Sieja *et al.* PHYSICAL REVIEW C **79**, 064310 (2009) (IBM) Betterman *et al.* PHYSICAL REVIEW C **82**, 044310 (2010) (VAMPIR) Petrovici PHYSICAL REVIEW C 85, 034337 (2012)

Nuclear shell modl

- Nucleons occupy orbitals within the atomic nucleus, similar to atomic electrons
- Unlike electrons, there are two different type of fermions in the nucleus
- Each occupy independent orbitals
- Closed shells push the nuclei toward spherical shapes
- Open shells push the nuclei toward deformed shapes

