

Measurement of neutron scattering with noble gas to search for an unknown force at J-PARC Delecto

Collaborators

Hirohiko M. Shimizu(Nagoya), Katsuya Hirota(Nagoya), Masaaki Kitaguchi(Nagoya), Christpher Craig Haddock(Indiana), William Michael Snow(Indiana), Kenji Mishima(KEK), Tamaki Yoshioka(Kyushu), Takashi Ino(KEK), Satoru Matsumoto(Kyushu) and Tatsushi Shima(Osaka)

Outline

Introduction

- Motivation
- Experimental principle

Facilities and Devices

Data analysis

- Method
- Experimental data

Summary

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Introduction(Motivation)

If extra-dimension exists, Gravitational potential is different from Newtonian potential at short range.

Nima Arkani-Hamed, Savas Dimopoulos and Gia Dvali Physics Letters B 429.3 (1998): 263-272.

$$V(r) = G \frac{m_1 m_2}{r} \left(1 + \alpha \exp\left(-\frac{r}{\lambda}\right) \right)$$

Newtonian Yukawa
potential potential

We search for **an unknown interaction** by the difference from the well-known potential.

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Introduction(Motivation)

$$V(r) = G \frac{m_1 m_2}{r} \left(1 + \alpha \exp\left(-\frac{r}{\lambda}\right) \right)$$

Born approximation for Yukawa potential term

$$\frac{d\sigma}{d\Omega}(\theta)_Y \propto \sqrt{\sigma_{Nuclear}} \alpha m_{Xe} \lambda \left(\frac{1}{1+C\sin^2\left(\frac{\theta}{2}\right)}\right)$$

Nuclear Scattering

Isotropic

Yukawa Interaction

Forward Scattering

page

short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Introduction(Inverse square law)

Introduction(Inverse square law)

Introduction (Principle)

Neutron is…

- 1. Electroneutral
- Suppress electromagnetic interaction Suppress Van der Waals force
- 2. Massive
- Interact by gravity

Noble gas has …

- 1. No molecular/crystal structure
- 2. Atomic spin 0
- Do not need consider the effect of multipole.
- 3. Chemical stability

To search for an unknown force, We measure **neutron scattering from noble gases**.

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

J-PARC/MLF/BL05/Low-Divergence Beam Branch

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

J-PARC/MLF/BL05/Low-Divergence Beam Branch

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

J-PARC/MLF/BL05/Low-Divergence Beam Branch

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

page 10

J-PARC/MLF/BL05/Low-Divergence Beam Branch

International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

page

Devices

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

12

new

3He PSD

1/2 inch. 7tubes 10atm.Voltage:1530VEfficiency:100%X resolution:~5mmLinearity:99.7%

3He Direct Beam

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide page 16 Sep, 2016, Noriko OI, Nagoya Univ.

۲ [mm]

40

30

20

10

0

-10

13

Method

Window

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Experimental Data(TOF vs X)

Time Of Flight vs X (Xe-Vacuum)

Method

Compare between…

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Experimental Data(X Plot)

Method

Make plots of differential cross section as the function of momentum transfer

Estimate the sensitivity of this experiment

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

$d\sigma/d\Omega(q)$ (Preliminary)

Red line q=0.0~7.0[nm⁻¹]

International Nuclear Physics Conference @ Adelaide

16 Sep, 2016, Noriko Ol, Nagoya Univ.

Restron Ballics and Physics

page

Summary & Outlook

It's significant to measure gravity at a short range.

We are analyzing the experiment data very carefully now.

Next experiment plan

- Increase gas pressure (100kPa -> 300kPa)
- Make larger beam size
 (φ10mm -> X10mm x Y30mm)
- Increase measurement time (1day -> 10day)

Simulation Upgrade

- 1. Absorption
- 2. Gas motion

20

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Back Up

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Experimental Data(TOF vs X:He)

Experimental Data(X Plot:He)

¹⁶ Sep, 2016, Noriko OI, Nagoya Univ.

Experimental Data(TOF vs X:He)

Time Of Flight vs X (Vacuum)

Setup Sketch

Test dσ/dΩ(q)

Red line q=0.0~7.0[nm⁻¹]

1barn/sr histogram

1barn/sr

Collider Test and Laboratory Test

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ. page

J-PARC (Tokai, Ibaraki, Japan)

Joint Project between KEK and JAEA

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide page 16 Sep, 2016, Noriko OI, Nagoya Univ.

Detector

3He Position Sensitive Detector

1/2 inch. 7tubes 10atm.

Voltage :1530V

Efficiency :100%

X resolution : \sim 5mm

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Detector

	p1[mm]	p0[mm]	Channel
	-(1.075±0.003)×10 ³	(8.40±0.02)×10 ²	8
Linearity 99.7%	-(1.084±0.003)×10 ³	(8.54±0.01)×10 ²	9
	-(1.074±0.003)×10 ³	(8.48±0.01)×10 ²	10
	-(1.076±0.002)×10 ³	(8.45±0.01)×10 ²	11
l / pl	-(1.073±0.003)×10 ³	(8.44±0.01)×10 ²	12
$p0 + p1 \times (-p^{-1})$	-(1.076±0.003)×10 ³	(8.25±0.01)×10 ²	13
$\int d\mathbf{r} d\mathbf$	-(1.078±0.003)×10 ³	(8.36±0.02)×10 ²	14

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide page 16 Sep, 2016, Noriko OI, Nagoya Univ.

Cell Window

Al window(0.1mm)

The background can be small because AI window can be thin.

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Van der Waals force

• $\lambda \lesssim 10 \mu m$: Van der Waals force is the main background.

$$U = -\frac{3\hbar c}{8\pi} \frac{\alpha_0}{r^4}$$

$\begin{array}{ll} \alpha_0 \ \text{:Atom electric polarizability} \\ & \text{Atoms.(H, He, etc.)} \ \sim 10^{-30} \mathrm{m}^3 \\ & \text{Neutron} \end{array} \qquad \sim 10^{-48} \mathrm{m}^3 \end{array}$

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

n-e scattering

n-e differential cross section as a function of Energy and Angle

- Backscattering is dominant.
- n-e scattering too small to detect in MC simulation for our detector region

33

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

n-e散乱

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Xe-Xe Ineraction

$$\frac{d\sigma}{d\Omega dE'} = \frac{d\sigma}{d\Omega dE'}_{coh} + \frac{d\sigma}{d\Omega dE'}_{inc}$$
$$= \frac{k'}{k} [b_c^2(q) S_c(q,\omega) + b_i^2 S_i(q,\omega)]$$

$$\frac{k'}{k}S_c(q,\omega) = [S_c(q) + \Delta S_c^{Pl}(q)]\delta(\omega)$$

- \cdot Static approximation
- Placzek correction

- /

 \cdot Lennard Jones interaction between Xe

$$u(r) = -\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

35

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Differential Cross Section

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

Structure factor

$$S(q,\omega) = S(q)\delta(\omega)$$

$$S(q) = 1 + \frac{2n}{q} \int_{0}^{\infty} \{e^{-\frac{E}{k_B T}} - 1\} r \sin(qr) dr$$

$$\approx 1 + \frac{2n}{q} \int_{0}^{R} \{e^{-\frac{\epsilon}{k_B T}} - 1\} r \sin(qr)$$

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide page 16 Sep, 2016, Noriko OI, Nagoya Univ.

Data acquisition time

Time

"Measurement of neutron scattering with noble gas to search for a short-range unknown force at J-PARC", International Nuclear Physics Conference @ Adelaide 16 Sep, 2016, Noriko OI, Nagoya Univ.

page 38