
THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

Eric B. Norman Dept. of Nuclear Engineering Univ. of California, Berkeley, CA U. S. A.

NUCLEAR PHYSICS IN THE 21ST CENTURY

International Nuclear Physics Conference INPC 2001

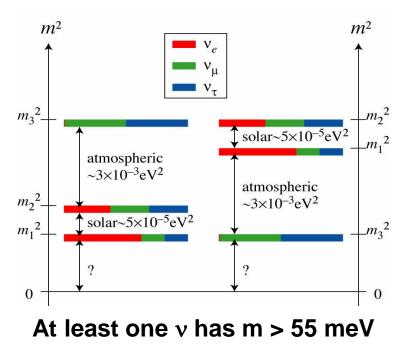
Berkeley, California

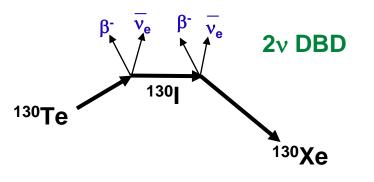
30 July - 3 August 2001

CUORE:

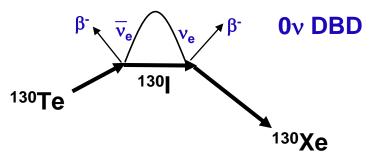
The Cryogenic Underground Observatory for Rare Events

J. W. Beeman¹, E. E. Haller^{1,2}, R.J. McDonald¹, E. B. Norman¹, A. R. Smith¹, A. Giuliani³, M. Pedretti³, G. Ventura⁴, M. Balata⁵, C. Bucci⁵, C. Pobes⁵, V. Palmieri⁶, G. Frossati⁷, A. de Waard⁷, C. Brofferio⁸, S. Capelli⁸, L. Carbone⁸, O. Cremonesi⁸, E. Fiorini⁸, D. Giugni⁸, P. Negri⁸, A. Nucciotti⁸, M. Pavan⁸, G. Pessina⁸, S. Pirro⁸, E. Previtali⁸, M. Vanzini⁸, L. Zanotti⁸, F. T. Avignone III⁹, R. J. Creswick⁹, H. A. Farach⁹, C. Rosenfeld⁹, S. Cembrian¹⁰, I. G. Irastorza⁹, A. Morales¹⁰

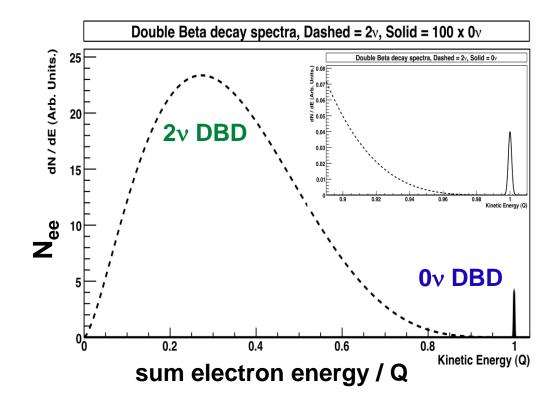

Recent results in v physics Neutrinos undergo flavor-changing oscillations Neutrinos have finite masses


- **Open Questions in Neutrino Physics:**
- What is the absolute scale of ν mass ?
- Are ν and $\bar{\nu}$ different particles ?

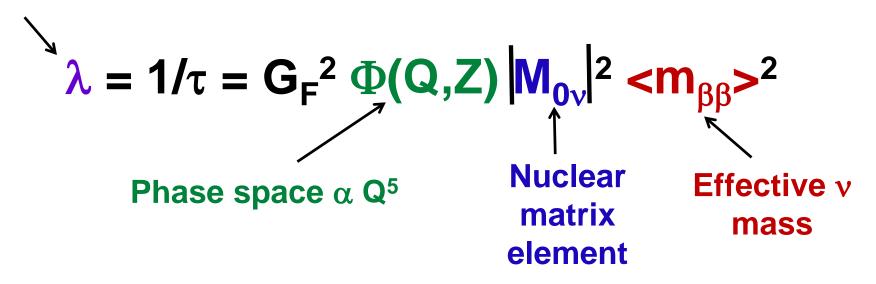
Alternative mass scheme:


m₁ ~ m₂ ~ m₃ All splittings small (degenerate)

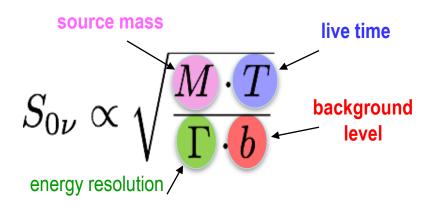
Neutrino mass hierarchy



Allowed by Standard Model


Only possible if v is its own antiparticle

Double Beta Decay


$\mathbf{0}_{\mathbf{V}} \ \boldsymbol{\beta} \boldsymbol{\beta} \ \mathbf{Rate} \ \mathbf{and} \ \mathbf{Neutrino} \ \mathbf{Mass}$

 $\mathbf{0}\mathbf{v}\ \mathbf{\beta}\mathbf{\beta}\ rate$

Requirements for a 0vDBD experiment

Experimental Sensitivity:

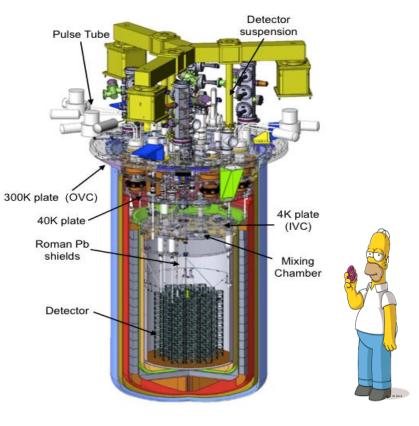
- → large source (many nuclei under observation)
- → long time measurements
- \rightarrow good energy resolution
- → low background

The CUORE experiment

Located at LNGS (Italy), ~3600 m.w.e. shield

Investigate: ¹³⁰Te \rightarrow ¹³⁰Xe + 2 e⁻

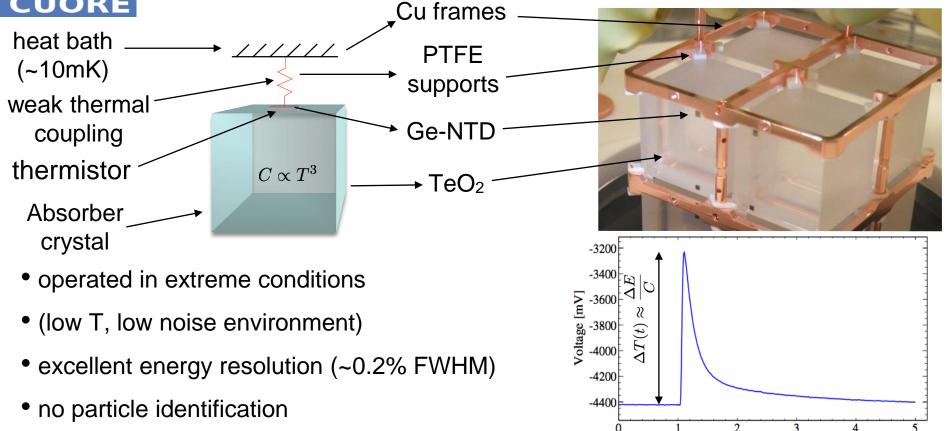
Array of 988 ^{nat}TeO₂ detectors, arranged in 19 towers, 13 floors each. Total mass of 206 kg of ¹³⁰Te


Operated at 10 mK

Energy resolution of 5 keV FWHM at $Q_{\beta\beta}$ (2527 keV)

Background goal: 10⁻² c/keV/kg/year in the ROI.

Sensitivity on $m_{\beta\beta}$ (5y, 90% C.L.): 50 - 130 meV


Sensitivity on 0vββ T_{1/2} (5y, 90% C.L.): 9.5 x 10²⁵ y

CUORE TeO₂ bolometers

Time [s]

• slow, but ok for rare event searches

TeO₂ crystal production

Shanghai Institute of Ceramics

Material	Category	Contamination limits	Te-batch
Metallic Te	Raw material	$^{238}U < 2 \times 10^{-10} \text{ g/g}$ $^{232}Th < 2 \times 10^{-10} \text{ g/g}$ $^{210}Pb < 10^{-4} \text{ Bq/kg}$	oxide powder-1
		⁴⁰ K < 10 ⁻³ Bq/kg ⁶⁰ Co < 10 ⁻⁵ Bq/kg	crystal growth procedure-1
Water and acids used for TeO ₂ powder synthesis	Reagent	$^{216}U < 2 \times 10^{-12} g/g$ $^{212}Th < 2 \times 10^{-12} g/g$	crystal ingots-1
Water	Consumable	$^{218}U < 2 \times 10^{-12} \text{ g/g}$ $^{212}\text{Ih} < 2 \times 10^{-12} \text{ g/g}$	reagents-2
TeO ₂ powder before crystal growth	Intermediary product	$^{230}U < 2 \times 10^{-10} g/g$ $^{232}Th < 2 \times 10^{-10} g/g$	oxide powder-2
		210 Pb < 10 ⁻⁴ Bq/kg 40 K < 10 ⁻³ Bq/kg 60 Co < 4 × 10 ⁻⁵ Bq/kg	crystal growth procedure-2
		$Pt < 10^{-7} g/g$ $Bi < 10^{-6} g/g$	crystal ingots-2
TeO2 crystal, ready-to-use	Final product	$^{210}U < 3 \times 10^{-13} g/g$ $^{212}U < 3 \times 10^{-13} g/g$ $^{212}Th < 3 \times 10^{-13} g/g$ $^{210}Pb < 10^{-5} Bq/kg$	shaping polishing
SiO ₂ powder for crystal polishing and textile	Consumables	$^{60}Co < 10^{-6}$ Bq/kg $^{219}U < 4 \times 10^{-12}$ g/g $^{212}Th < 4 \times 10^{-12}$ g/g	shipment
polishing pads Gloves, plastic bags, deaning tissues, etc.	Andllaries	$^{238}U < 4 \times 10^{-12} \text{ g/g}$ $^{232}Ih < 4 \times 10^{-12} \text{ g/g}$	Journal of Crystal Growth 312 (2010) 299

Crystal Validation 4% of crystals tested as bolometers

Bulk contamination of TeO₂

Upper limits at 90% C.L. on the activity and on the bulk contamination of uranium and thorium decay chains in the hypothesis of secular equilibrium.

Chain	Nudide	Upper limit [Bq/kg]	Upper limit [g/g]				
²³⁸ U	²³⁸ U	2.5E-07	2.0E-14				
	²³⁴ U	4.7E-07	3.6E-14				
	²³⁰ Th	5.7E-07	4.4E-14				
	²²⁶ Ra	6.7E-07	5.3E-14				
	218Po	1.6E-07	1.3E-14				
²³² Th	232Th	1.3E-07	3.1E-14				
	²¹² Bi	8.4E-07	2.1E-13				
Preliminary Bulk contamination contributes							
< 3x10 ⁻⁶ cts/keV/kg/yr to CUORE							
background							

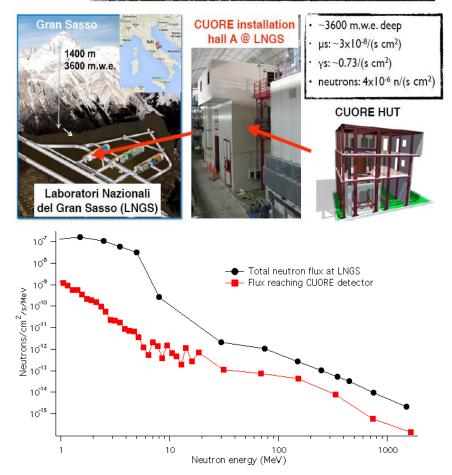
Surface contamination contributes < 1.5x10⁻³ cts/keV/kg/yr to CUORE background

Surface contamination of TeO₂

Upper limits at 90% C.L. for surface contamination, for different penetration length values. See text for details on the calculation of confidence intervals.

Depth	Nuclide	Upper limit 90% C.L. [Bq/cm ²]
0.01 μm	²³⁸ U	3.1E-09
-	²²⁶ Ra	6.3E-09
	²³² Th	1.6E-09
0.1 μm	238U	3.2E-09
	²²⁶ Ra	6.6E-09
	²³² Th	1.6E-09
0.2 μm	238U	3.8E-09
-	²²⁶ Ra	7.6E-09
	²³² Th	2.0E-09
1 μm	²³⁸ U	3.7E-09
	²²⁶ Ra	8.9E-09
	²³² Th	1.9E-09
5 <i>µ</i> m	²³⁸ U	2.0E-09
	²²⁶ Ra	5.4E-09
	²³² Th	1.0E-09
10 µm	²³⁸ U	1.7E-09
-	²²⁶ Ra	4.4E-09
	²³² Th	8.3E-10

Astroparticle Physics 35 (2012) 839


Cosmogenic activation of TeO₂

Bin	Bin range	Integrated neutron flux	Cross section (mb)		Contribution to $R(s^{-1})$	
		$((cm^2 s)^{-1})$	^{110m} Ag	⁶⁰ Co	^{110m} Ag	⁶⁰ Co
1	1.25-800 MeV	$(3.7 \pm 1.3) \times 10^{-3}$	0.28 ± 0.04	<0.0016	$(2.9 \pm 1.1) \times 10^{-6}$ (80%)	$<(1.7 \pm 0.6) \times 10^{-8}$ (<37%)
2	800 MeV to 1.4 GeV	$(5.3 \pm 1.9) \times 10^{-5}$	3.95 ± 0.40 ª [43]	0.09 ± 0.04 [19]	$(5.9 \pm 2.2) \times 10^{-7}$ (16%)	$(1.4 \pm 0.8) \times 10^{-8}$ (>30%)
3	1.4-23 GeV	$(2.6 \pm 1.0) \times 10^{-5}$	1.9 ± 0.3 [19]	0.20 ± 0.04 [19]	$(1.4 \pm 0.6) \times 10^{-7}$ (3.9%)	$(1.5 \pm 0.6) \times 10^{-8}$ (>33%)
4	23-150 GeV	$(1.6 \pm 0.6) \times 10^{-7}$	0.88 ± 0.59 [19]	0.75 ± 0.08 [19]	$\begin{array}{c} (4.0\pm3.1)\times10^{-10}\\ (0.01\%)\end{array}$	$(3.4 \pm 1.3) \times 10^{-10}$ (>0.8%)

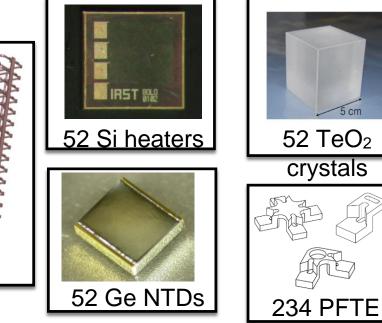

Cosmogenic activation of TeO₂ contributes < 10⁻⁴ cts/kev/kg/yr to CUORE background NIM B 295 (2013) 16 Phys. Rev. C 92 (2015) 024620

CUORE: Cryogenic Underground Observatory for Rare Events

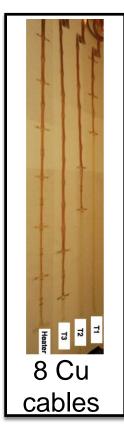
primary goal: search for neutrino less double beta $(0\nu\beta\beta)$ decay in ¹³⁰Te

Gamma-ray production cross sections from neutron-induced reactions on tellurium (Poster NN1)

Environmental neutrons contribute < 10⁻⁵ cts/keV/kg/yr to CUORE background



~2000 Cu


components

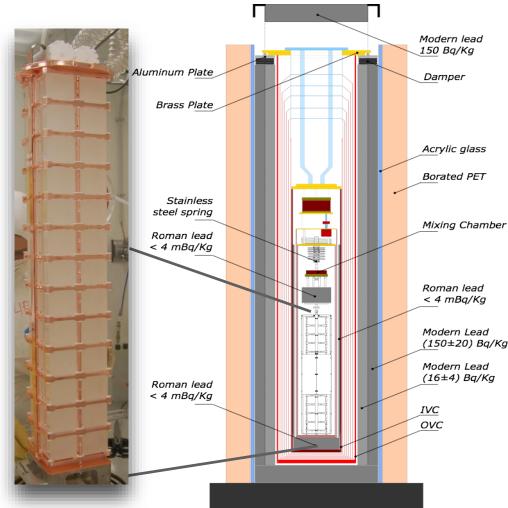
CUORE-module: a tower

5 cm

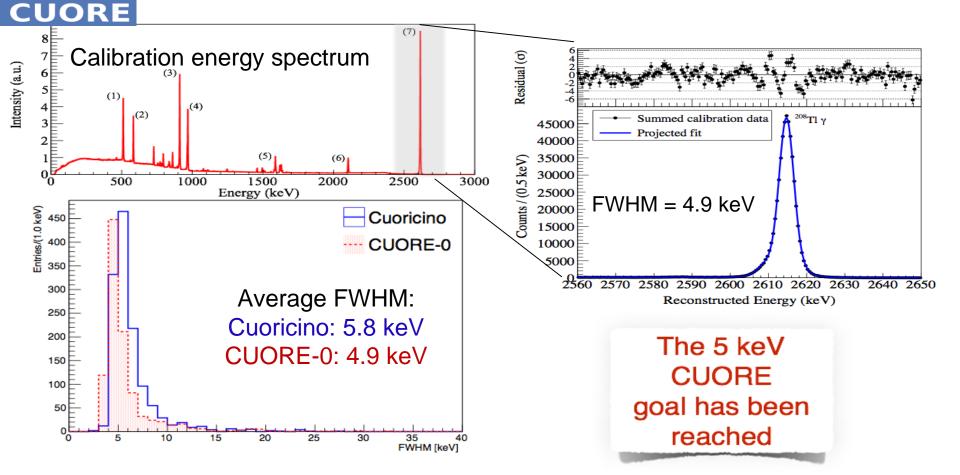
holders New detector design structure Strict material selection (e.g. raw materials) Strict surface cleaning technique for Cu and TeO₂ Minimization of Rn exposure (Glove Box assembly)

•

•

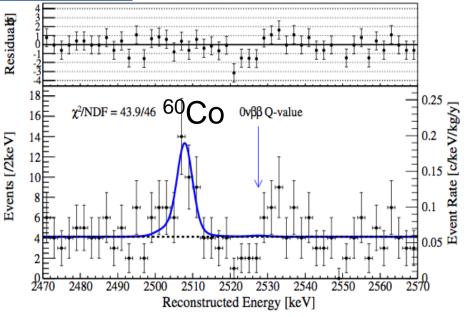

CUORE-0

CUORE-0 was the first tower produced from the CUORE assembly line:


52 TeO₂ 5x5x5 cm³ crystals (~750 g each)

- Total detector mass: 39 kg TeO₂ (10.9 kg of ¹³⁰Te)
- Operated in Gran Sasso National Laboratory from March 2013 to March 2015
- Statistics accumulated: 9.8 kg-yr ¹³⁰Te
- Duty cycle: 78.6%

https://arxiv.org/abs/1604.05465



CUORE0 performance

CUORE-0 0vββ result

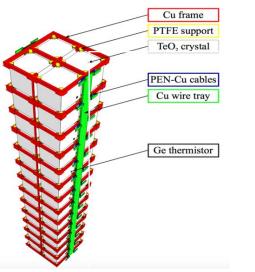
CUORE-0 Final Limit (90% C.L.)

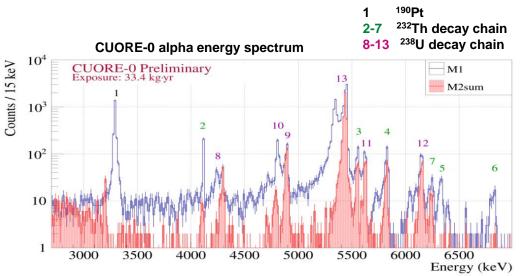
 $T_{1/2} > 2.7 \times 10^{24} \, yr$

CUORE-0 Background:

 $b = 0.058 \pm 0.004 \pm 0.002 \text{ cts/keV/kg/yr}$

in the region of interest

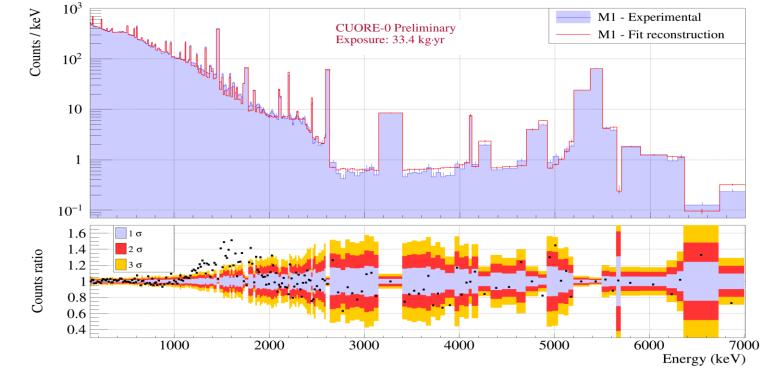

Combining the limit with Cuoricino experiment (90% C.L.): $T_{1/2} > 4.0 \times 10^{24} \text{ yr}$


Phys. Rev. Lett. **115** (2015) 102502 Phys. Rev C **93** (2016) 045503

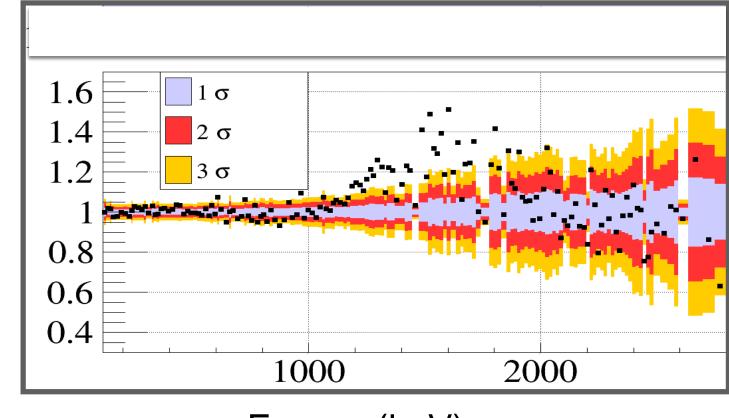
CUORE-0 background model

Developed for understanding of bkgd contribution in the ROI

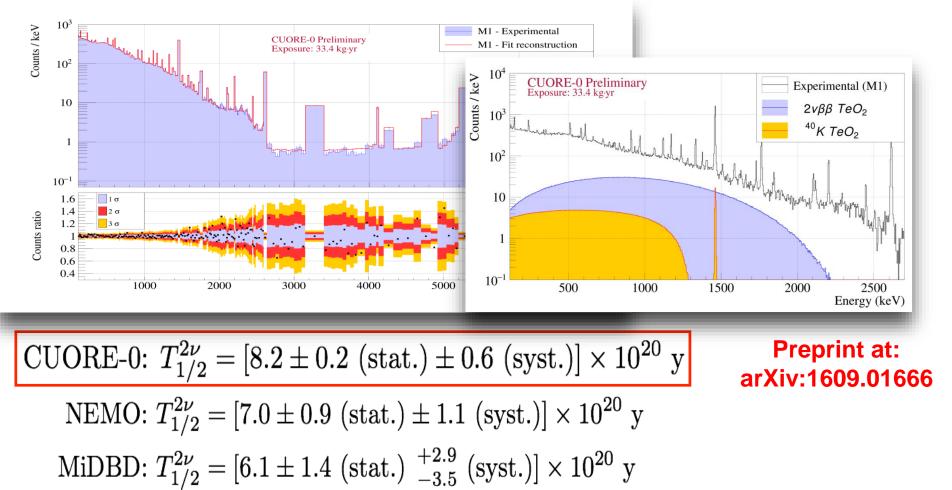
- 1) Identification of bkg sources:
 - I. CUORE-0 analysis
 - II. radio-assay measurements
 - III. cosmogenic activation analysis



2) MC model of the detector to simulate background sources

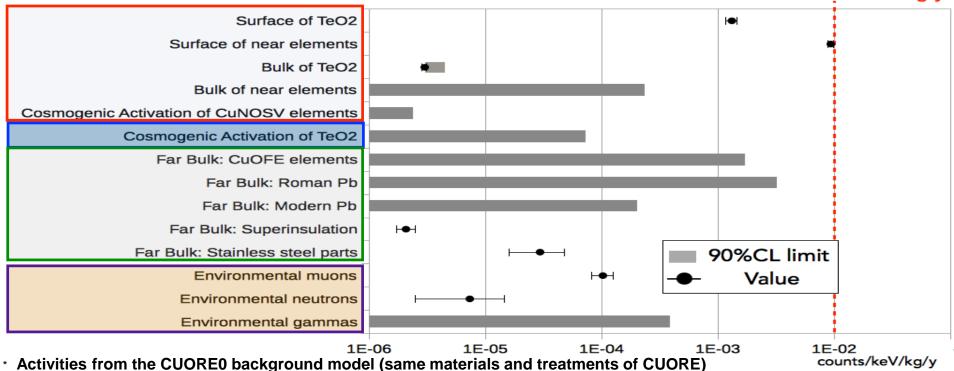

Fit CUORE0 spectrum w/o 2vββ

Full reconstruction between: 118 keV - 7 MeV Reconstruction within 3σ range for most bins


Fit CUORE0 spectrum w/o 2vββ

Exp/Fit

Energy (keV)

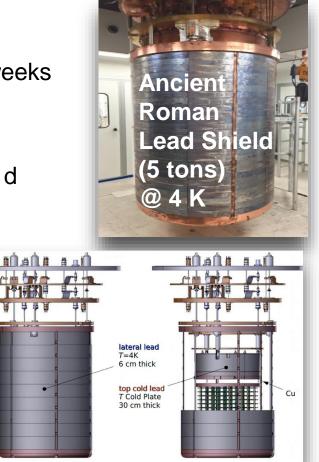

Fit CUORE0 spectrum with 2vββ

CUORE BACKGROUND BUDGET

CUORE GOAL: 0.01 counts/keV/kg/y

Preliminary

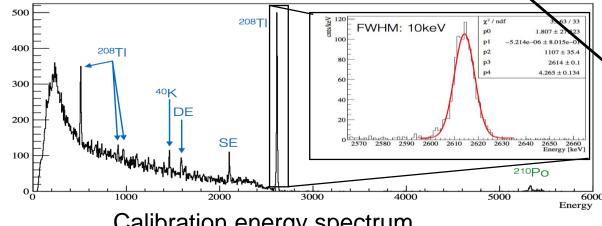
- * [D.Chiesa talk at 28th Rencontres the Blois]
- * Activities from new calculation with the most recent radionuclide production cross sections measured for Te [PRC92(2015)024620]
- * Activities from measurements with HPGe and NAA (some are new)
- * γ , μ , n fluxes at LNGS from measurements/calculations [Astrop. Phys. 33(2010)169]

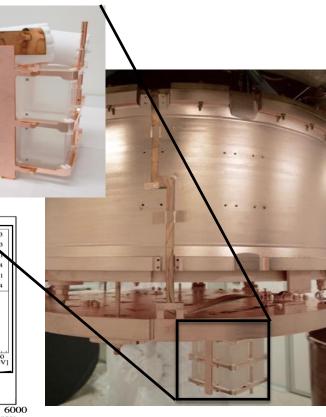


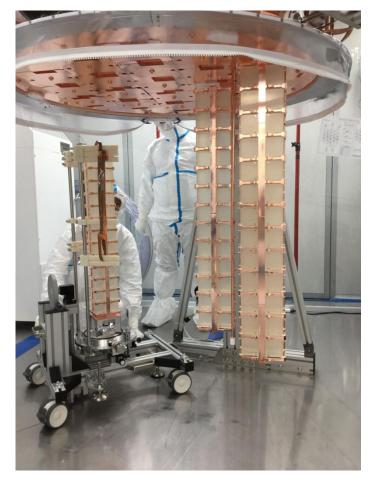
CUORE cryostat commissioning

Cu

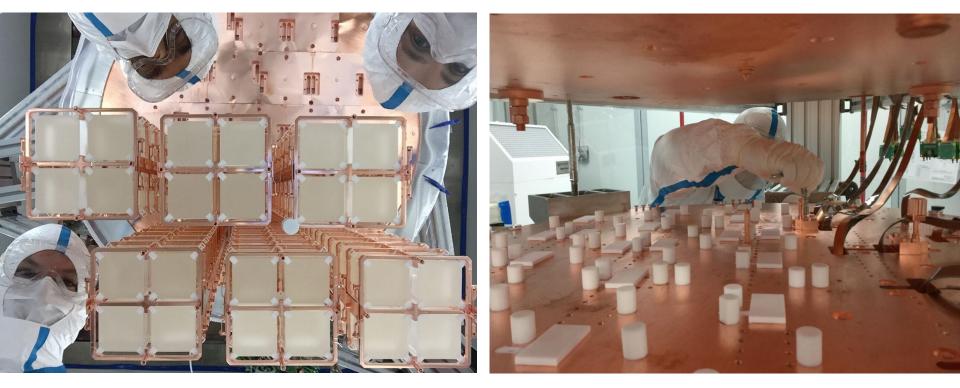
- Shielding
- Fast Cooling System: cool down detector to 4K in ~3 weeks
- Detector calibration system: ²³²Th calibration sources deployed from 300 K to 10 mK
- Stable base temperature @ 6.3 mK over more than 70 d
- Cooling power. 3µW @ 10 mK





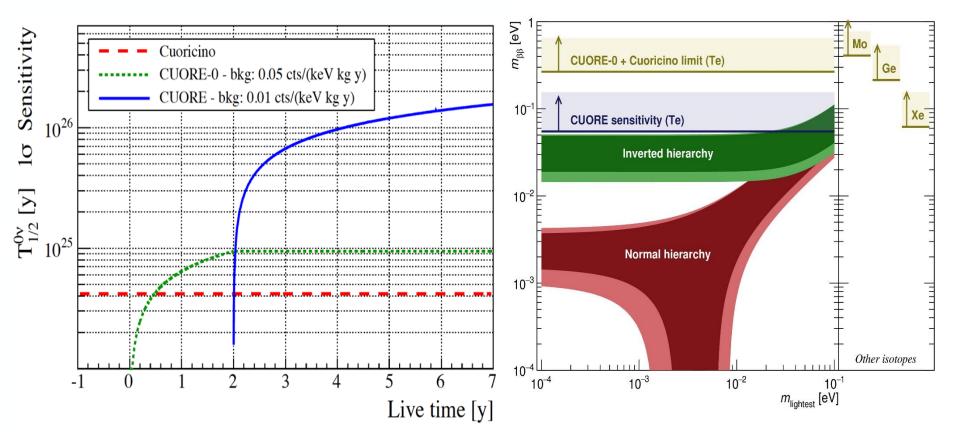

Mini Tower Test Run

- 8 TeO₂ bolometers (Mini-Tower) have been operated in CUORE cryostat to validate performance.
- Stable base temperature during operations ٠
- Good detector performance (energy resolution). ٠
- No indications of unaccounted-for bkg sources. ٠
- Successful test of electronics, DAQ, temperature ٠ stabilization, and detector calibration systems.


Calibration energy spectrum

CUORE tower installation

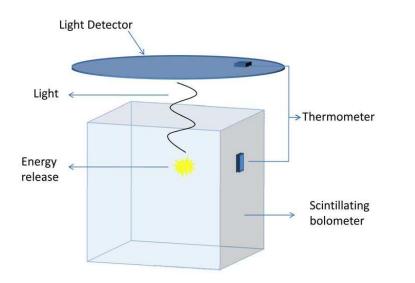
CUORE tower installation



Summary

- TeO₂ bolometers offer a well-established and competitive technology for 0vββ decay investigation.
- CUORE-0 demonstrated that the CUORE sensitivity is within the reach.
 - CUORE-0 result, combined with Cuoricino, currently sets the best limit on $0\nu\beta\beta$ T_{1/2} of ¹³⁰Te.
 - ¹³⁰Te $2\nu\beta\beta$ half-life has been measured (paper submitted to EJPC).
- The 19 CUORE towers have been installed in the cryostat.

CUORE operations will start by the end of this year.


CUORE Sensitivity

Plans for the future: CUORE Upgrade with Particle ID (CUPID)

•

Goal: build a large bolometric $0\nu\beta\beta$ experiment with ~1 ton of isotope and nearly zero background.

- Based on the CUORE design, CUORE cryogenics
- Enrichment (¹³⁰Te, ⁸²Se, ¹¹⁶Cd, ¹⁰⁰Mo)
- Background rejection (scintillating bolometers, Cherenkov tagging, surface rejection, improved resolution...)
- Active vetoes
- Goal: reach sensitivity to entire IH region:
 - Half-life sensitivity (2-5)x10²⁷ y in 10 y
 - m_{ββ} sensitivity 6-20 meV

Several R&D activities to select the highest performing one

arxiv.org/abs/1504.03599

Thank you on behalf of the CUORE Collaboration

