Key reaction rates of s-process nucleosynthesis and the impact of nuclear physics uncertainty

<u>Nobuya Nishimura</u>

Keele University (UK)

BRIDGCE UK

Collaboration with:

T. Rauscher (Basel/Hertfordshire), R. Hirschi (Keele), G. Cescutti

(Hertfordshire), J. Den Hartogh (Keele), A. St. J. Murphy (Edinburgh)

Facilities Council

The s-process

- produces a half amount of heavy isotopes beyond iron (a recent review, Kaeppeler et al., 2011, RvMP, 83, 157)
- (n, γ) and β -decay from Fe seeds along the stable nuclei

Two sites of the s-process

weak s-process

- massive stars ($> 10 \text{ M}_{\odot}$)
- core He and shell C-burnings
- neutron source: ²²Ne(a,n)²⁵Mg
- weak component (A < 100)

main s-process

- low mass AGB stars
- thermal pulses
- neutron source: ¹³C(a,n)¹⁶O
- main component (up to Pb, Bi)

The s-process in massive stars: uncertainties

Stellar environment

Stellar (structure) evolution models

 mass, metallicity, dynamics: convection, rotation and magnetic fields, single/binary stars etc.

Nuclear burnings in the stellar interior

- main fusion reactions: triple- α , ¹²C(a,g)¹⁶O, …
- n-source and n-poison reactions: ²²Ne(a,n)²⁵Mg, …

(see e.g., Nishimura et al., AIPC 1594 p 146, 2014)

Network calculation

Monte-Carlo simulation

- <u>Nucleosynthesis</u>
 - (n,g) reaction
 - beta-decay

uncertainty in the final abundances

feedback (find key reaction/decay)

Contents

Introduction

- <u>Methods</u>
 - the PizBuin MC nucleosynthesis code
 - T-dependent reaction rate uncertainty
 - MC and analysis
- <u>Results</u>
 - s-process in massive stars
 - main s-process in AGB stars
 - other processes
- <u>Summary</u>
- Rauscher, NN+ (2016), MNRAS in press; arXiv1606.05671
- NN+ 2016, MNRAS, in prep.
- Cescutti, NN+ 2017(?), in prep.

Nuclear chart : <u>http://www.nndc.bnl.gov/nudat2/</u>

Monte-Carlo network code

- Monte-Carlo framework
 - PizBuin MC-driver
 - (developed by Rauscher, NN, Hirschi)
 - a simple "Brute-force" approach
 - parallelized by OpenMP for shared memory architectures
 (paralleled easily, but harder debugging. . .)

Piz Buin (mountain)

Nuclear Reaction network

- Network solver:
 - WinNet: the latest Basel network, Winteler+, 2012
- Reaction rates:
 - Reaclib: (Rauscher & Thielemann 2000)
 - T-dependent beta-decay (Takahashi & Yokoi 1987, Goriely 1999)

T-dependent uncertainty:

- Provided by Reaclib format, based on Rauscher 2012

<u>T-dependent uncertainty: (n,γ) & β-decay</u>

(n,g) reactions

- <u>Experimental rates</u>
 - base rates: KADoNiS v0.3 (Dillmann+, 2009)
 - consider both g.s. and e.s. (Rauscher, ApJ, 775, 2011 $U(T) = U_{\rm g.s.}X + U_{\rm e.s.}(1-X)$

 β -decay: a similar method using partition functions

(See, NN+2016) ⁸³Kr(n,ღ)⁸⁴Kr

MC calculation with reaction network

Propagation of uncertainty: ⁶⁴Cu(β-)⁶⁴Zn

Uncertainty by MC: (n,g) and β-decay

(n,g) & β^{\pm}

Uncertainty by MC: (n,g) and β-decay

only (n,g) only β^{\pm}

Correlation factors

Correlation factors

We can derive key reaction rates from the MC results

Screening of the reaction rates

Key rate Level 1 $^{64}Cu(+\beta)^{64}Zn$ $^{67}Zn + n \leftrightarrow \gamma + {}^{68}Zn$ $^{72}Ge + n \leftrightarrow \gamma + {}^{73}Ge$ $^{73}Ge + n \leftrightarrow \gamma + {}^{74}Ge$ $^{77}Se + n \leftrightarrow \gamma + {}^{78}Se$ $^{78}Se + n \leftrightarrow \gamma + {}^{79}Se$ $^{80}Br(+\beta)^{80}Kr$ $^{81}Kr + n \leftrightarrow \gamma + {}^{82}Kr$ $^{83}Kr + n \leftrightarrow \gamma + {}^{84}Kr$ $^{85}Kr + n \leftrightarrow \gamma + {}^{86}Kr$

Lv2

Lv3

I v/4

Key reaction list

all Lv1 reaction all Lv1+Lv2 reaction

are fixed

are fixed

							1	
Nuclide	r _{cor,0}	r _{cor,1}	r _{cor,2}	Key rate Level 1	Key rate Level 2	Key rate level 3	X_0 (30 keV)	X_0 (80 keV)
⁶⁴ Zn	0.76			64 Cu(+ β) ⁶⁴ Zn				
	-0.47	-0.73			$^{64}Cu + e^- \leftrightarrow \nu_e + {}^{64}Ni$			
⁶⁷ Zn	-0.67			67 Zn + n $\leftrightarrow \gamma$ + 68 Zn			1.00	1.00
⁷² Ge	-0.85			$^{72}\text{Ge} + n \leftrightarrow \gamma + ^{73}\text{Ge}$			1.00	1.00
⁷³ Ge	-0.84			$^{73}\text{Ge} + n \leftrightarrow \gamma + {}^{74}\text{Ge}$			0.88	0.81
⁷⁴ Ge	-0.44	-0.53	-0.67	·		$^{74}\text{Ge} + n \leftrightarrow \gamma + ^{75}\text{Ge}$	1.00	1.00
⁷⁵ As	-0.50	-0.58	-0.70			$^{75}As + n \leftrightarrow \gamma + ^{76}As$	1.00	1.00
⁷⁷ Se	-0.86			$^{77}\text{Se} + n \leftrightarrow \gamma + {}^{78}\text{Se}$			1.00	1.00
⁷⁸ Se	-0.71			⁷⁸ Se + n $\leftrightarrow \gamma$ + ⁷⁹ Se			1.00	1.00
	0.37	0.68			68 Zn + n $\leftrightarrow \gamma$ + 69 Zn		1.00	1.00
⁸⁰ Se	-0.76			$^{80}\mathrm{Br}(+m{eta})^{80}\mathrm{Kr}$	-			
	0.27	0.73			$^{80}{ m Br}(-m eta)^{80}{ m Se}$			
	0.16	0.44	0.88			$^{80}Br + e^- \leftrightarrow \nu_e + {}^{80}Se$		
⁷⁹ Br	-0.63	-0.73			$^{79}Br + n \leftrightarrow \gamma + {}^{80}Br$		1.00	1.00
⁸¹ Br	-0.80			81 Kr + n $\leftrightarrow \gamma$ + 82 Kr	-		1.00	1.00
⁸³ Kr	-0.76			83 Kr + n $\leftrightarrow \gamma$ + 84 Kr			0.81	0.74
⁸⁴ Kr	-0.49	-0.64	-0.76			84 Kr + n $\leftrightarrow \gamma$ + 85 Kr	1.00	1.00
⁸⁶ Kr	0.84			85 Kr + n $\leftrightarrow \gamma$ + 86 Kr			1.00	1.00
	-0.31	-0.71			86 Kr + n $\leftrightarrow \gamma$ + 87 Kr		1.00	1.00
	-0.33	-0.62	-0.90			$^{85}\mathrm{Kr}(+m{eta})^{85}\mathrm{Rb}$		
⁸⁷ Rb	-0.57	-0.64	-0.95			87 Rb + n $\leftrightarrow \gamma$ + 88 Rb	1.00	1.00
						ji		

Key reaction list: ⁸⁶Kr

vs ⁸⁵Kr(n,g)⁸⁶Kr

	⁸⁶ Kr(n,g)	⁸⁵ Kr(b+)
upper	-0.42	-0.68
standard	-0.71	-0.62
lower	-0.84	-0.42

main s-process

- 'one zone' a low mass AGB star
- 2Msun model by MESA code
- the initial ¹³C is adjusted
- a typical s-process pattern

lighter

medium

Cescutti+NN+, in prep.

heavier

main s-process

(n,g)-contribution β -decay contribution

One more example: gamma-process

Rauscher, NN+ (2016), MNRAS (in press) arXiv:1606.05671

15M_{sun}

Nuclide	r _{corr,0}	r _{corr,1}	r _{corr,2}	Key rate Level 1	Key rate Level 2	Key rate Level 3	$X_0 (2 \text{ GK})$ capture	X ₀ (3 GK capture
⁷⁸ Kr	-0.84			$^{77}Br + p \leftrightarrow \gamma + {}^{78}Kr$			9.63×10^{-2}	4.44×10^{-1}
	0.34	0.87			79 Kr + n $\leftrightarrow \gamma$ + 80 Kr		1.28×10^{-1}	7.94×10^{-3}
⁹² Mo	-0.74			$^{91}Nb + p \leftrightarrow \gamma + ^{92}Mo$			8.88×10^{-1}	8.24×10^{-1}
⁹⁶ Ru	-0.73			$^{92}Mo + \alpha \leftrightarrow \gamma + {}^{96}Ru$			1.00	9.86×10^{-1}
	-0.43	-0.69			95 Tc + p $\leftrightarrow \gamma + {}^{96}$ Ru		7.64×10^{-1}	6.60×10^{-1}
^{102}Pd	-0.87			$^{101}Pd + n \leftrightarrow \gamma + ^{102}Pd$			5.62×10^{-1}	3.97×10^{-1}
¹¹² Sn	-0.88			111 Sn + n $\leftrightarrow \gamma$ + 112 Sn			7.79×10^{-1}	6.73 × 10 ⁻
¹¹⁴ Sn	-0.77			113 Sn + n $\leftrightarrow \gamma$ + 114 Sn			1.82×10^{-1}	1.28×10^{-1}
120 Te	-0.64	-0.66			$^{119}\text{Te} + n \leftrightarrow \gamma + ^{120}\text{Te}$		2.43×10^{-1}	1.77×10^{-1}
¹²⁴ Xe	-0.74			123 Xe + n $\leftrightarrow \gamma$ + 124 Xe			8.25×10^{-2}	4.38×10^{-3}
¹²⁶ Xe	-0.75			$^{125}Cs + p \leftrightarrow \gamma + ^{126}Ba$			1.17×10^{-1}	7.41×10^{-3}
	0.30	0.64	0.65			$^{127}Ba + n \leftrightarrow \gamma + ^{128}Ba$	5.78×10^{-2}	3.59×10^{-3}
¹³⁰ Ba	-0.66			$^{129}Ba + n \leftrightarrow \gamma + ^{130}Ba$			5.77×10^{-2}	3.55×10^{-3}
¹³² Ba	-0.77			$^{131}Ba + n \leftrightarrow \gamma + ^{132}Ba$			1.07×10^{-1}	5.85×10^{-3}
¹³⁶ Ce	-0.69			$^{135}Ce + n \leftrightarrow \gamma + ^{136}Ce$			1.86×10^{-1}	8.94×10^{-3}
	0.31	0.72			$^{139}Ce + n \leftrightarrow \gamma + {}^{140}Ce$		8.56×10^{-1}	6.09×10^{-1}
^{138}Ce	-0.66			$^{137}Ce + n \leftrightarrow \gamma + ^{138}Ce$			4.16×10^{-1}	2.54×10^{-1}
	-0.16	-0.19	-0.66			$^{136}Ce + n \leftrightarrow \gamma + ^{137}Ce$	7.57×10^{-1}	4.70×10^{-1}
¹⁴⁴ Sm	0.70			$^{145}Eu + p \leftrightarrow \gamma + {}^{146}Gd$			8.06×10^{-1}	6.02×10^{-1}
¹⁵² Gd	-0.74			$^{151}\text{Gd} + n \leftrightarrow \gamma + ^{152}\text{Gd}$			6.18×10^{-1}	3.87×10^{-1}
	0.43	0.76			$^{153}\text{Gd} + n \leftrightarrow \gamma + ^{154}\text{Gd}$		5.38×10^{-2}	2.78×10^{-3}
	-0.14	-0.26	-0.73			$^{148}\text{Sm} + \alpha \leftrightarrow \gamma + ^{152}\text{Gd}$	8.14×10^{-1}	5.22×10^{-1}
¹⁶⁴ Er	-0.78			$^{160}\text{Er} + \alpha \leftrightarrow \gamma + {}^{164}\text{Yb}$			2.13×10^{-1}	1.24×10^{-1}
^{180}W	-0.83			$^{176}W + \alpha \leftrightarrow \gamma + {}^{180}Os$			1.83×10^{-1}	1.04×10^{-1}
	-0.19	-0.60	-0.68			$^{179}Os + n \leftrightarrow \gamma + ^{180}Os$	4.89×10^{-2}	2.49×10^{-1}
¹⁹⁶ Hg	-0.83			$^{195}Pb + n \leftrightarrow \gamma + ^{196}Pb$			2.97×10^{-1}	1.89×10^{-1}
	0.31	0.70			$^{197}\text{Pb} + n \leftrightarrow \gamma + ^{198}\text{Pb}$		3.28×10^{-1}	2.39×10^{-1}
	0.17	0.35	0.67			$^{199}Pb + n \leftrightarrow \gamma + ^{200}Pb$	6.37×10^{-1}	3.47×10^{-1}
⁹² Nb	0.76			90 Zr + p $\leftrightarrow \gamma + ^{91}$ Nb			1.00	9.95 × 10-
¹⁴⁶ Sm	-0.57	-0.75			$^{144}Sm + \alpha \leftrightarrow \gamma + ^{148}Gd$		9.99×10^{-1}	9.65×10^{-1}
	0.34	0.44	0.79			$^{147}\text{Gd} + n \leftrightarrow \gamma + ^{148}\text{Gd}$	9.92×10^{-1}	9.28 × 10 ⁻

Nuclide	r _{corr,0}	r _{corr,1}	r _{corr,2}	Key rate Level 1	Key rate Level 2	Key rate Level 3	$X_0 (2 \text{ GK})$ capture	$X_0 (3 \text{ GK})$ capture
⁷⁸ Kr	-0.77			77 Br + p $\leftrightarrow \gamma + ^{78}$ Kr			9.63×10^{-2}	4.44×10^{-2}
	0.38	0.66			79 Kr + n $\leftrightarrow \gamma + {}^{80}$ Kr		1.28×10^{-1}	7.94×10^{-2}
⁹² Mo	-0.87			$^{91}\text{Nb} + p \leftrightarrow \gamma + ^{92}\text{Mo}$			8.88×10^{-1}	8.24×10^{-1}
⁹⁴ Mo	0.78			$^{95}Mo + n \leftrightarrow \gamma + {}^{96}Mo$			9.14×10^{-1}	7.69×10^{-1}
⁹⁶ Ru	-0.67			$^{92}Mo + \alpha \leftrightarrow \gamma + {}^{96}Ru$			1.00	9.86×10^{-1}
¹⁰² Pd	-0.71			$^{101}Pd + n \leftrightarrow \gamma + {}^{102}Pd$			5.62×10^{-1}	3.97×10^{-1}
^{112}Sn	-0.74			111 Sn + n $\leftrightarrow \gamma$ + 112 Sn			7.79×10^{-1}	6.73×10^{-1}
^{136}Ce	0.53	0.66			$^{137}Ce + n \leftrightarrow \gamma + ^{138}Ce$		4.16×10^{-1}	2.54×10^{-1}
^{138}Ce	0.71			$^{139}\text{Ce} + n \leftrightarrow \gamma + {}^{140}\text{Ce}$			8.71×10^{-1}	6.43×10^{-1}
^{138}La	0.94			138 La + n $\leftrightarrow \gamma$ + 139 La			6.18×10^{-1}	4.92×10^{-1}
^{144}Sm	0.79			$^{145}\text{Eu} + p \leftrightarrow \gamma + {}^{146}\text{Gd}$			8.06×10^{-1}	6.02×10^{-1}
¹⁶⁴ Er	-0.76			$^{160}\mathrm{Er} + \alpha \leftrightarrow \gamma + {}^{164}\mathrm{Yb}$			2.13×10^{-1}	1.24×10^{-1}
¹⁶⁸ Yb	-0.80			164 Yb + $\alpha \leftrightarrow \gamma$ + 168 Hf			2.12×10^{-1}	1.26×10^{-1}
	-0.14	-0.67			166 Yb + $\alpha \leftrightarrow \gamma$ + 170 Hf		1.80×10^{-1}	1.10×10^{-1}
180 Ta	-0.88			$^{180}\mathrm{Ta} + \mathrm{n} \leftrightarrow \gamma + ^{181}\mathrm{Ta}$			7.09×10^{-2}	3.96×10^{-2}
	0.09	0.90			$^{179}\mathrm{Ta} + \mathrm{n} \leftrightarrow \gamma + ^{180}\mathrm{Ta}$		2.37×10^{-1}	1.46×10^{-1}
^{180}W	-0.82			$^{176}W + \alpha \leftrightarrow \gamma + {}^{180}Os$			1.83×10^{-1}	1.04×10^{-1}
¹⁹⁰ Pt	-0.79			190 Pt + n $\leftrightarrow \gamma$ + 191 Pt			3.58×10^{-1}	1.58×10^{-1}
¹⁹⁶ Hg	-0.86			$^{195}Pb + n \leftrightarrow \gamma + {}^{196}Pb$			2.97×10^{-1}	1.89×10^{-1}
	0.17	0.64	0.65			$^{197}\text{Pb} + n \leftrightarrow \gamma + ^{198}\text{Pb}$	3.28×10^{-1}	2.39×10^{-1}
⁹² Nb	0.75			92 Zr + p $\leftrightarrow \gamma + ^{93}$ Nb			9.91×10^{-1}	9.76×10^{-1}
^{98}Tc	0.89			$^{96}Mo + p \leftrightarrow \gamma + ^{97}Tc$			9.50×10^{-1}	8.56×10^{-1}
¹⁴⁶ Sm	-0.65			$^{144}\text{Sm} + \alpha \leftrightarrow \gamma + {}^{148}\text{Gd}$			9.99×10^{-1}	9.65×10^{-1}
	0.33	0.79		-	$^{147}\text{Gd} + n \leftrightarrow \gamma + ^{148}\text{Gd}$		9.92×10^{-1}	9.28×10^{-1}

<u>Future</u>

- Other nucleosynthesis

p-process, vp-process, rp-process, rp-process, r-process etc.

- UK Supercomputer facility
DiRAC

- Improved nuclear uncertainty model

w/ T. Rauscher @UK BRIDGCE meeting (Keele U)

Summary:

- MC nuclear reaction network code
 - applicable to general nucleosynthesis
 - statistical analysis to find important reactions
 parallelized by OpenMP for shared memory systems

•<u>s-process</u>

- T-dependent uncertainty enhanced by exited state contribution
- \cdot (n, γ) contributes global uncertainty, while few beta-decay affects uncertainty around branchings
- \cdot key reactions (n,g) and β -decay are identified
 - •weak s: 10+ reactions/decay
 - ·main s: \sim 50 mostly (n, γ) reactions

Backup slides

- T-dependent uncertainty
 - (n,g)
 - beta
- the main s-process key rate full list
- performance tests

Importance of T-dependent uncertainty:

ground state contribution: X, by Rauscher, ApJS, 201, 2012

 $X(T) = \frac{r^{\text{lab}}}{r^* G_0(T)} = \frac{\int_0^\infty \sigma^{\text{lab}}(E) \Phi_{\text{MB}}(E, T) dE}{\int_0^\infty \sigma^{\text{eff}}(E) \Phi_{\text{MB}}(E, T) dE}$

$$\sigma^{\text{eff}} = \sum_{\mu} \sum_{\nu} \frac{2J_{\mu} + 1}{2J_0 + 1} \frac{E - E_{\mu}}{E} \sigma^{\mu \to \nu} (E - E_{\mu})$$

T-dependent uncertainty: (n,g)

For details, see T. Rauscher, ApJL, 775, 2011

- Theoretical rates (incl. some experimental ones)
 - basic rates: Reaclib (Rauscher & Thielemann 2000)
 - a constant factor 2
- Experimental rates
 - base rates: KADoNiS v0.3 (Dillemann el al., 2009)
 - the formula: Rauscher, ApJ, 775, 2011

 $U(T) = U_{g.s.}X + U_{e.s.}(1 - X)$

- ground state (experimental based): $u_{g.s.} \sim 1.0 - 1.3$
- excited states (theory based): $u_{\text{e.s.}} = 5$ (given constant)
- X(T): the fraction of particles in the ground state

T-dependent uncertainty: beta-decay

- beta-decay: only the ground state 1.3 (30%)
- beta-decay: T-dependent
 (Bruslib: Takahashi & Yokoi 1987, Goriely 1999)

$$U(T) = \frac{u_{\text{g.s.}}}{g_0(T)} + u_{\text{e.s.}} \left(1 - \frac{1}{g_0(T)}\right)$$

- ground state: $u_{\text{g.s.}} = 1.3 (30 \%)$
- excited states: $u_{\text{e.s.}} = 10$
- g_0 : partition function of the ground state

main s-process: full list

Nuclide	$r_{ m cor,0}$	$r_{\rm cor,1}$	$r_{\rm cor,2}$	Key reaction	_					
				Level 1						
Sr88	-0.65			${}^{88}\mathrm{Sr}(\mathrm{n},\gamma){}^{89}\mathrm{Sr}$		Sn122	-0.73			$^{122}Sb(+\beta)^{122}Te$
Y89	-0.83			${}^{89}{ m Y}({ m n},\gamma){}^{90}{ m Y}$			0.57	0.86		(
Zr90	-0.89			$^{90}\mathrm{Zr}(\mathrm{n},\gamma)^{91}\mathrm{Zr}$			-0.33	-0.49	-0.96	
Zr91	-0.91			91 Zr $(n,\gamma)^{92}$ Zr		Sb121	-0.92			$^{121}\mathrm{Sb}(\mathrm{n},\gamma)^{122}\mathrm{Sb}$
Zr92	-0.92			92 Zr(n, γ) 93 Zr		Te125	-0.92			$^{125}{ m Te}({ m n},\gamma)^{126}{ m Te}$
Zr94	-0.86			$^{94}\mathrm{Zr}(\mathrm{n},\gamma)^{95}\mathrm{Zr}$		Te126	-0.69			$^{126}{ m Te}({ m n},\gamma)^{127}{ m Te}$
Nb93	-0.97			93 Zr(n, γ) 94 Zr		Xe128	0.66			$^{128}I(+\beta)^{128}Xe$
Mo95	-0.85			$^{95}Mo(n,\gamma)^{96}Mo$		Xe132	-0.97			132 Xe(n, γ) 133 Xe
Mo96	-0.94			${}^{96}Mo(n,\gamma){}^{97}Mo$		Cs133	-0.89			$^{133}Cs(n,\gamma)^{134}Cs$
Mo97	-0.87			$^{97}Mo(n,\gamma)^{98}Mo$		Ba134 Do125	-0.85			$^{135}Ba(n,\gamma)^{136}Ba$
Mo98	-0.94			$^{98}Mo(n,\gamma)^{99}Mo$		Da130 Ba136	-0.70			$^{136}Ba(n,\gamma)^{137}Ba$
Ru99	-0.91			$^{99}Tc(n,\gamma)^{100}Tc$		Ba137	-0.84			$^{137}Ba(n,\gamma)^{138}Ba$
Ru100	-0.93			100 Ru(n, γ) 101 Ru		Ba138	-0.65	-0.71		Du(11,7) Du
Ru102	-0.86			$^{102}Ru(n,\gamma)^{103}Ru$		La139	-0.87	0112		139 La $(n,\gamma)^{140}$ La
Rh103	-0.95			103 Rh(n, γ) 104 Rh		Gd152	0.59	0.60	0.66	
Pd104	-0.97			$^{104}Pd(n,\gamma)^{105}Pd$		Er166	-0.81			$^{166}{ m Er}({ m n},\gamma)^{167}{ m Er}$
Pd106	-0.97			$^{106}Pd(n,\gamma)^{107}Pd$		Er168	-0.86			$^{168}\mathrm{Er}(\mathrm{n},\gamma)^{169}\mathrm{Er}$
Pd108	-0.96			$^{108}Pd(n,\gamma)^{109}Pd$		Ta181	-0.84			181 Ta $(n,\gamma)^{182}$ Ta
Ag107	-0.81			$^{107}Pd(n,\gamma)^{108}Pd$		Os187	-0.86			187 Os(n, γ) 188 Os
Ag109	-0.80			$109 \operatorname{Ag}(n,\gamma)^{110} \operatorname{Ag}$		Pt192	-0.89			192 Pt (n,γ) 193 Pt
In115	-0.97			$^{115}In(n,\gamma)^{116}In$		Hg198	-0.63	-0.65	-0.68	20011-(
Sn110	-0.97			$119 Sn(n \sim) 120 Sn$		Hg200	-0.67			200 Hg(n, γ) 201 Hg
Juiio	-0.01			51(1,7) 51	-	Hg201	-0.77			$-\gamma Hg(n,\gamma) -Hg$

Large-scale MC calculations

for shared memory systems

- Fortran + OpenMP
- parallelized well
- optimized code/matrix library for large scared memory computers (multi threads)
- <u>Computer resources</u>
 numascale

Shyne cluster @Keele (ERC) performance tests of matrix solvers on shared memory system

Cosmos2 @Cambridge (UK DiRAC facility, STFC)

