Half-life measurement of isomeric states in A = 25 & 26

D. Nishimura¹, K. Aoki¹, T. Nagai¹, Y. Takei¹, A. Takenouchi¹, M. Fukuda², J. Chiba¹, K. Chikaato³, H. Du², S. Fukuda⁴, A. Ikeda³, T. Izumikawa⁵, S. Kanbayashi², N. Kanda³, Y. Kanke¹, I. Kato⁶, A. Kitagawa⁴, M. Machida¹, M. Mihara², E. Miyata³, J. Nagumo¹, K. Nishizuka³, S. Ohmika⁶, K. Ohnishi², T. Ohtsubo³, H. Oikawa¹, S. Sato⁴, T. Sugihara², T. Suzuki⁶, N. Tadano⁶, H. Takahashi³, M. Takechi³, M. Tanaka², Y. Tanaka², S. Yagi¹, T. Yamaguchi⁶, S. Yamaoka², and K. Yokoyama³

¹Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan

² Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
 ³Department of Physics, Niigata University, Niigata 950-2102, Japan
 ⁴National Institute of Radiological Sciences, Chiba 263-8555, Japan
 ⁵RI Center, Niigata University, Niigata 950-8510, Japan
 ⁶Department of Physics, Saitama University, Saitama 338-8570, Japan

Contents

- Background & Motivation
 - Nucleosynthesis of rp-process
- Experiment
 - Facility (NIRS-HIMAC, SB2 beam line)
 - Experimental Setup(γ-ray detection system)
- Results & Discussion
 - $\bullet\,\gamma\text{-}\mathrm{ray}$ energy spectra and decay curves
 - E_{γ} , $T_{1/2}$ and Level scheme
 - Transition probabilities and comparison with shell model calc.

• Summary

Background & Motivation

²⁵Si & ²⁶P

[1] Improved Kelson-Garvey mass relation: J. Tian et al., Phys, Rev. C 87 014313 (2013) [2] β decay of ²⁵Si & ²⁶P and IAS- ΔE assumed: J.-C.Thomas et al., Eur. Phys. J. A 21, 419 (2004). [3] AME2003 mass evaluation: G.Audi, A. H.Wapstra and C.Thibault, Nucl. Phys. A729, 337 (2003).

p. 4/26

(1) Nuclear Synthesis of rp-process

p. 5/26

rp-process in N = 11 isotones

H. Herndl et al., Phys. Rev. C 52, 1078 (1995).

rp-process in N = 11 isotones

Experiment

SB2 beam line in NIRS-HIMAC

p. 9/26

Production of ²⁵Si & ²⁶P

GANIL; J.-C.Thomas et al., Eur. Phys. J. A 21, 419 (2004). MSU; M.B. Bennett, et al., PRL 111, 232503 (2013). p.10/26

Experimental setup at F3

p.11/26

Results & Discussion

How to Search Isomeric States

p.14/26

Energy-Timing correlations of γ rays

γ-ray Energy & Timing Spectra

 ^{26}P

p.16/26

γ-ray Energy & Decay Time Spectra

 $^{25}\mathrm{Si}$

p.17/26

Weiskoppf estimation

	$^{26}\mathrm{P}$		$^{25}\mathrm{Si}$	
	α W.u.		α	W.u.
E1	0.00221	$1.68{ imes}10^{-6}$	0.115	$1.82{ imes}10^{-4}$
M1	0.00142	$4.81 imes 10^{-5}$	0.0302	$5.49 imes 10^{-3}$
$\mathrm{E2}$	0.0191	9.89×10^{0}	2.99	$4.16 imes 10^3$
M2	0.00993	$2.85{ imes}10^2$	0.662	$2.78{ imes}10^{5}$
E3	0.139	8.07×10^{7}	65.2	$3.12{ imes}10^{10}$
M3	0.0687	2.46×10^{9}	14.4	$3.74 imes 10^{12}$

 α : internal conversion coefficients

BRICC code: T. Kibedi, et al., NIM A 589. 202(2008).

Weiskoppf estimation

	²⁶ P		$^{25}\mathrm{Si}$	
	α	W.u.	α	W.u.
E1	0.00221	$1.68 imes 10^{-6}$	0.115	1.82×10^{-4}
M1	0.00142	4.81×10^{-5}	0.0302	5.49×10^{-3}
E2	0.0191	9.89×10^{0}	2.99	4.16×10^{3}
M2	0.00993	$2.85 imes10^2$	0.662	2.78×10^{5}
E3	0.139	8.07×10^{7}	65.2	3.12×10^{10}
M3	0.0687	2.46×10^{9}	14.4	$3.74{ imes}10^{12}$

Since B(M1) of $8.61 \times 10^{-5} \mu_N^2$ for ²⁶P is extremely hindered, M1 transition can be probably rejected.

Since there are no negative parity states, E1 transition can be rejected. α : internal conversion coefficients

BRICC code: T. Kibedi, et al., NIM A 589. 202(2008).

Comparison with Shell Model (²⁶P)

 $B(E2)\downarrow$ values (in units of e^2 fm⁴).

	exp.	USD	USDA	USDB
²⁶ P	45.3	31.2	32.3	24.0
²⁶ Na	31.3^{*}	39.3	38.1	31.3

* $T_{1/2}$ =4.16(25)µs, α = 0.137 is used.

 $e_{\rm p} = 1.36 \& e_{\rm n} = 0.45$ are used

W.A. Richter et al., Phys. Rev. C 78, 064302 (2008).

D. Nishimura et al., EPJ Web of Conf. 66, 02072 (2014).

B. Siebeck et al., Phys. Rev. C 91, 014311 (2015).

p.20/26

Comparison with Shell Model (²⁵Si)

$B(M1)\downarrow$ values in units of μ_N^2					
	exp.	USD	USDA	USDB	
$^{25}\mathrm{Si}$	0.0098(3)	0.0490	0.0292	0.0302	
²⁵ Na	0.0108(6)	0.0703	0.0444	0.0439	
	assuming mixing ratio $\delta = 0$.				

W.A. Richter et al., Phys. Rev. C 78, 064302 (2008).

 π [d_{3/2} d_{5/2} s_{1/2}] v[d_{3/2} d_{5/2} s_{1/2}]

p.22/26

Summary

89.5

M1(+E2

 $3/2^{+}$

 $5/2^{+}$

163.8

E2

26**p**

 1^{+}

3+

E2

 (1^+)

- Proton-rich nuclei 25 Si and 26 P have attracted much interest since they are related to nuclear synthesis of rp-process.
- The low-lying isomeric states in $^{25}\rm{Si}$ and $^{26}\rm{P}$ have been investigated by using $\gamma\text{-ray}$ spectroscopy at NIRS-HIMAC.
- The γ -ray energy and half-life for ²⁵Si and ²⁶P are determined to be 82.5

$$E_{\gamma} = 44.9(2) \text{ keV}, \ E_{\gamma} = 163.8(2) \text{ keV}$$

$$T_{1/2} = 43.0(6) \text{ ns}, T_{1/2} = 104(3) \text{ ns}$$

- M1 for ²⁵Si and E2 for ²⁶P transitions are suggested by calculating the transition probabilities with the above E_{γ} and $T_{1/2}$. Therefore, $J^{\pi} = 3/2^+$ and $J^{\pi} = 1^+$ are expected for their isomeric states.
- In order to calculate $N_A < \sigma v >$, theoretical support and precise mass measurement are desiable.

Backups

E2 matrix element in sd shell

Matrix element

$$M_{\rm p} = \sqrt{(2J_i + 1) B(\text{E}2)}$$

 $M_{\rm p} = e_{\rm p}A_{\rm p} + e_{\rm n}A_{\rm n}$

Assuming that shell model results of

$$A_{\rm p} = 4.74$$
 and $A_{\rm n} = 5.95$
 $A_{\rm n}(T_Z = -2) = A_{\rm p}(T_Z = +2)$

We can solve $e_{p \text{ and }} e_{n}$

$$\begin{cases} e_{\rm p} = 0.19 \\ e_{\rm n} = 1.81 \end{cases} \leftarrow \text{very strange } !!$$

Shell model does not perfectly reproduce the isospin symmetry of B(E2) in ²⁶P & ²⁶Na pair.

Results of E_{γ} & $T_{1/2}$

Ave.	163.8(2)	104(3)	Ave.	44.9(2)	43.0(6)
NaI(Tl)	163.8(10)	102(4)	NaI(Tl)	44.8(20)	42.8(08)
LaBr ₃ (Ce)	164.1(10)	106(4)	LaBr ₃ (Ce)	42.0(20)	43.2(08)
HPGe	163.7(02)	103(8)	HPGe	44.9(02)	42.3(30)
	$E_{\gamma}({ m keV})$	$T_{1/2}(\mathrm{ns})$		$E_{\gamma}({ m keV})$	$T_{1/2}(\mathrm{ns})$
	$^{26}\mathrm{P}$		$^{25}\mathrm{Si}$		

c.f. 40.0(50) keV

c.f. Shell model: B.A. Brown & P.G. Hansen Phys. Lett. B 381 391 (1996).

A. Navin et al., Phys. Rev. Lett. 81 5089 (1998).

143(14)

70(11)

Check of Direct Proton Emission

We did not observe 44-keV & 104-ns γ rays in ²⁶P. $I_{\gamma}(44)/I_{\gamma}(164) < 5\%$.