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Lots of X, Y and Z states observed by BaBar, Belle, BESIII, 
CDF, CLEOIII, CLEO-c, CMS, D0 and LHCb Collaborations

many not confirmed states, many candidates for exotic states
domingo, 11 de setembro de 16



Exotic States
Glueball

Hybrids
Tetraquarks

Pentaquarks

Molecules
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interpretações de molécula e 
tetraquark  diferem pela forma 

com que os quarks estão 
organizados no estado

X(3872): molecular                             state (Swanson, Close, Voloshin, Wong ...)

M(D∗0D̄0) = (3871 ± 1) ⇒
X(3872) : molecular (D∗0D̄0 + D̄∗0D0) state (Close and Page PLB57(2004))

Tornqwist (ZPC61(94)) predict a D̄D∗ molecule with JP C = 0−+ or 1++

PRL97, 162002 (06) PRD77, 011102 (08)

Mbelle = 3875.2±0.7±0.8 Mbabar = 3875.1±1.1±0.5

higher masses than X → J/ψππ
– p.5/35
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Tetraquark state?

Maiani et al. (PRD71 (05)) tetraquark JP C = 1++ states:

Xq = [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1

isospin eigenstates
↗X(I = 0) = Xu+Xd√

2

↘
X(I = 1) = Xu−Xd√

2

– p.8/35

X(3872)






X(3872) → γJ/ψ ⇒ C = +

not seen in e+e− → X(3872) ⇒ JP $= 1−

angular distribution favors JP C = 1++

cc̄ spec. for JP C = 1++
(Barnes & Godfrey, PRD69 (2004))

↗2 3P1 (3990)

↘
3 3P1 (4290)

if X(3872) = cc̄ ⇒ I = 0, G = +

X → J/ψπ+π−π0

X → J/ψπ+π− ∼ 1 ⇒ strong isospin and G parity violation

X(3872) can not be easily explained as a cc̄ state
– p.4/35

 forte violação de 
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BaBar search for Z(4430)+ in B-0 J/ -K0+, (2S)-K0+
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) Detailed study of K– system before 

looking at J/–, (2S)– :

M(K) plot 1) S, P, D wave intensity 

K*(892)+K*(1430)

region

K*(892)+K*(1430)

veto

M((2S)), GeV

4
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3
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J/– and (2S) – distributions

background (from K) + BW (free mass & width)

No signal in J/ - (like in Belle), ~2 in (2S)  - : 

< 2.6x10-5 @ 95% CL,           (4.1 ± 1.0 ±1.4) x 10-5

(2S)– mass distribution is statistically consistent 

with Belle (2/ndf=54.7/58)

- K* veto:             M=4437±5, =23±25 MeV, 1.7

- K*(892) + K*
2(1430): M=4483±3, =15±11 MeV, 2.5

B(B0Z–K+(2S)) at M=4430 & =45 MeV:        

shifted

ICHEP 08, 413 fb-1


K-

 K

K contributions,

2) K is parameterized
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K contributions,

2) K is parameterized

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2012-004
LHCb-PAPER-2011-033

February 21, 2012

Search for the X(4140) state in
B+ � J/⇥�K+ decays

The LHCb collaboration †

Abstract

A search for the X(4140) state in B+ ⇥ J/⇤⇥K+ decays is performed
with 0.37 fb�1 of pp collisions at

⌅
s = 7 TeV collected by the LHCb ex-

periment. No evidence for this state is found, in 2.4� disagreement with
a measurement by CDF. An upper limit on its production rate is set,
B(B+ ⇥ X(4140)K+)� B(X(4140) ⇥ J/⇤⇥)/B(B+ ⇥ J/⇤⇥K+) < 0.07 at 90%
confidence level.

Submitted to Physical Review D Rapid Communications

†Authors are listed on the following pages.

ar
X

iv
:1

2
0
2
.5

0
8
7
v
1
  
[h

ep
-e

x
] 

 2
3
 F

eb
 2

0
1
2

III

III

III III

 possible structure: tetraquarks or molecules 

 Up to now Belle, BaBar, BESIII, CLEO-c and LHCb 
reported 8 charged charmonium states
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molecular and tetraquark 
interpretations differ by the way 
quarks are organized in the stateWhat is the structure of the new states ? 

Tetraquark Meson molecule 

Hybrid c 

Hadro-charmonium 

cc uu

New questions 

What is the structure of the new states ? 

Tetraquark Meson molecule 

Hybrid c 

Hadro-charmonium 

cc uu

New questions 

compact state
state larger 
than normal 

mesons
domingo, 11 de setembro de 16



X±(5568) ! B0
s⇡

±

X±(5568): most recent acquisition
arXiv:1602.07588

M = (5567.8±2.9±1.2) MeV
Γ = (21.9±6.4±3.5) MeV
stat. significance 5.1σ

p

domingo, 11 de setembro de 16



ICHEP2016 talk

LHCb and CMS: no structure is found from Bs0 π+ 
from threshold up to 6000 MeV

arXiv:1608.00435

domingo, 11 de setembro de 16



from D. Zieminska, ICHEP2016 talk
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a

Theoretical calculations
a

Agaev et al., arXiv:1602.08642; Chen et al., arXiv:
1602.08916; Wang, arXiv:1602.08711; Chen et al., arXiv:
1602.08916; Zanetti et al., arXiv:1602.09041; Agaev et al., 
arXiv:1603.00290; Dias et al., arXiv:1603.02249; 
Albuquerque et al., arXiv:1604.05566; ...

QCD sum rules:

quark models:
Wang & Zhu, arXiv:1602.08806; Liu et al., arXiv:
1603.01131; Xiao & Chen, arXiv:1603.00228; Stancu, arXiv:
1603.03322; Lu & Dong, arXiv:1603.06417; Chen & Ping, 
arXiv:1604.05615; Maiani et al., arXiv:1604.01731; ...

coupled channels: Albaladejo et al., arXiv:1603.09230

rescattering effects: Liu & Li., arXiv:1603.00708 

more general 
arguments:

Burns & Swanson, arXiv:1603.04366; Guo et al., 
arXiv:1603.06316

domingo, 11 de setembro de 16



X±(5568)⎨

Tetraquark state
Agaev et al., arXiv:1602.08642; Chen et al., 
arXiv:1602.08916; Wang, arXiv:1602.08711; 
Tang & Qiao, arXiv:1603.04761

BK molecular state
Agaev et al., arXiv:1603.02708; Xiao & 
Chen, arXiv:1603.00228; Albaladejo et al., 
PLB757
mass not compatible with 4-q or mol.
Burns & Swanson, arXiv:1603.04366; Guo et 
al., arXiv:1603.06316; Zanetti et al., arXiv:
1602.09041; Wang & Zhu, arXiv:
1602.08806; Chen & Ping, arXiv:
1604.05651; Maiani et al., arXiv:1604.01731;  
Lu & Dong, arXiv:1603.06417; Albuquerque 
et al., arXiv:1604.05566
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Burns & Swanson (arXiv:1603.04366): could the signal 
be due to the fact that D0 detector cannot detect π0 

at low transverse momentum?

domingo, 11 de setembro de 16



Burns & Swanson (arXiv:1603.04366): could the signal 
be due to the fact that D0 detector cannot detect π0 

at low transverse momentum?

it naturally gives rise to a kink in the Bs0π+ spectrum 
near 5570 MeV

consider the weak decay: B+
c ! B0

s⇢
+ ! B0

s⇡
+[⇡0]
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Burns & Swanson (arXiv:1603.04366): could the signal 
be due to the fact that D0 detector cannot detect π0 

at low transverse momentum?

it naturally gives rise to a kink in the Bs0π+ spectrum 
near 5570 MeV

consider the weak decay: B+
c ! B0

s⇢
+ ! B0

s⇡
+[⇡0]

What about LHCb and CMS detectors?
domingo, 11 de setembro de 16



QCD Sum Rule

Fundamental Assumption: Principle of Duality

Π(q) = i

∫
d4x eiq.x 〈0|T [j(x)j†(0)]|0〉

Theoretical side Phenomenological side

Πphen = λ2 1

m2
S − q2

+ continuum, λ = 〈0|j|S〉

ΠOP E(q2) =

∫ ∞

m2
c

ds
ρ(s)

s − q2
, ρ(s) =

1

π
Im[ΠOP E ]

condensates up to dimension 8






quark condensate
gluon condensate
mixed condensates
four-quark condensate– p.14/35
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∫
d4x eiq.x 〈0|T [j(x)j†(0)]|0〉

Theoretical side Phenomenological side
! !

quark level hadron level
quark and gluon hadron parameters
degrees of freedom (masses, couplings,

form-factors,...)

! !
Wilson OPE dispersion relation

To improve the matching ⇒ Borel transform

– p.17/30
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Introduction 4

the quark level the complex structure of the QCD vac-
uum leads us to employ the Wilson’s operator product
expansion (OPE) (69).

In QCD we only know how to work analitycally in the
perturbative regime. Therefore, the perturbative part of
Π(q) in Eq.(1) can be reliably calculated. However, this
does not yet imply that all important contributions to
the QCD of the sum rule have been taken into account.
The complete calculation has to include the effects due
to the fields of soft gluons and quarks populating the
QCD vacuum. A practical way to calculate the vacuum-
field contributions to the correlation function is through
a generalized Wilson OPE. To apply this method to the
correlation function (1), one has to expand the product
of two currents in a series of local operators:

Π(q) = i

∫

d4x eiq·x〈0|T [j(x)j†(0)|0〉 =
∑

n

Cn(Q2)Ôn ,

(2)
where the set {Ôn} includes all local gauge invariant
operators expressible in terms of the gluon fields and
the fields of light quarks. Eq. (2) is a concise form of
the Wilson OPE. The coefficients Cn(Q2) (Q2 = −q2),
by construction, include only the short-distance domain
and can, therefore, be evaluated perturbatively. Non-
perturbative long-distance effects are contained only in
the local operators. In this expasion, the operators are
ordered according to their dimension n. The lowest-
dimension operator with n = 0 is the unit operator as-
sociated with the perturbative contribution: C0(Q2) =
Πper(Q2), Ô0 = 1. The QCD vacuum fields are repre-
sented in (2) in the form of vacuum condensates. The
lowest dimension condensates are the quark condensate
of dimension three: Ô3 = 〈q̄q〉, and the gluon conden-
sate of dimension four: Ô4 = 〈g2G2〉. The contributions
of higher dimension condensates are suppressed by large
powers of Λ2

QCD/Q2, where 1/ΛQCD is the typical long-
distance scale. Therefore, even at intermediate values of
Q2 (∼ 1 GeV2), the expansion in Eq. (2) can be safely
truncated after a few terms.

The generic correlation function in Eq. (1) has a dis-
persion representation

Π(q2) = −
∫

ds
ρ(s)

q2 − s + iε
+ · · · , (3)

through its discontinuity, ρ(s), on the physical cut. The
dots in Eq. (3) represent subtraction terms.

B. The spectral density

The discontinuity can be written as the imaginary part
of the correlation function:

ρ(s) =
1

π
Im[Π(s)] . (4)

The evaluation of the spectral density (ρ(s)) is simpler
than the evaluation of the correlation function itself, and

the knownledge of ρ(s) allows one to recover the whole
function Π(q2) through the integral in Eq. (3).

The calculation of the phenomenological side proceeds
by inserting intermediate states for the hadron, H , of
interest. The current j (j†) is an operator that anni-
hilates (creates) all hadronic states that have the same
quantum numbers as j. Consequently, Π(q) contains in-
formation about all these hadronic states, including the
low mass hadron of interest. In order for the QCD sum
rule technique to be useful, one must parameterize ρ(s)
with a small number of parameters. The lowest reso-
nance is often fairly narrow, whereas higher-mass states
are broader. Therefore, one can parameterize the spec-
tral density as a single sharp pole representing the lowest
resonance of mass m, plus a smooth continuum repre-
senting higher mass states:

ρ(s) = λ2δ(s − m2) + ρcont(s) , (5)

where λ gives the coupling of the current with the low
mass hadron, H :

〈0|j|H〉 = λ. (6)

For simplicity, one often assumes that the continuum
contribution to the spectral density, ρcont(s) in Eq. (5),
vanishes bellow a certain continuum threshold s0. Above
this threshold, it is assumed to be given by the result
obtained with the OPE. Therefore, one uses the ansatz

ρcont(s) = ρOPE(s)Θ(s − s0) . (7)

C. The mass sum rule

Now one might attempt to match the two descriptions
of the correlator:

Πphen(Q2) ↔ ΠOPE(Q2) . (8)

However, such a matching is not yet practical. The OPE
side is only valid a sufficiently large spacelike Q2. On the
other hand, the phenomenological description is signifi-
cantly dominated by the lowest pole only for sufficiently
small Q2, or better yet, timelike q2 near the pole. To im-
prove the overlap between the two sides of the sum rule,
one applies the Borel transformation

BM2 [Π(q2)] = lim
−q2,n→∞
−q2/n=M2

(−q2)n+1

n!

(

d

dq2

)n

Π(q2) . (9)

Two important examples are:

BM2

[

q2n
]

= 0 , (10)

and

BM2

[

1

(m2 − q2)n

]

=
1

(n − 1)!

e−m2/M2

(M2)n−1
, (11)

valid at small Q2 valid at large Q2

 s0: continuum parameter

domingo, 11 de setembro de 16



continuum =

∫ ∞

s0

ds
ρOP E(s)

s − q2

Borel Transform

{
eliminates subtraction terms
suppresses higher order condensates
increases importance pole contribution

λ2e−m2
S/M 2

=

∫ s0

m2
c

ds ρOP E(s) e−s/M 2

good Sum Rule ⇒ Borel window such that:

• pole contribution > continuum contribution

• converging OPE

–p.15/34

QCD Sum Rule

Fundamental Assumption: Principle of Duality

Π(q) = i

∫
d4x eiq.x 〈0|T [j(x)j†(0)]|0〉

Theoretical side Phenomenological side
! !

quark level hadron level
quark and gluon hadron parameters
degrees of freedom (masses, couplings,

form-factors,...)

! !
Wilson OPE dispersion relation

To improve the matching ⇒ Borel transform

– p.17/30

Introduction 5

for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the
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and
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has positive C. However, this current is not a G-parity
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rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)
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µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
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pole dominance ←     

a

No OPE convergence for s0<46 GeV2
a
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not compatible with 
X(5568) mass, but
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a

How to solve this problem?
a

7

From Eqs. (58) and (61) we get the following relation
between the coupling constants:

gXψωfω

gXψρfρ
=

Nω

(

cosα + sinα
)

Nρ

(

cosα − sinα
) . (62)

Using the previous result in Eq. (41) and the numerical
values for fω and fρ we have

Γ(X → J/ψ π+π−π0)

Γ(X → J/ψ π+π−)
# 0.15

(

cosα + sinα

cosα − sinα

)2

. (63)

This is exactly the same relation obtained in refs. [11, 27],
that determines α ∼ 200 for reproducing the experimen-
tal result in Eq.(1).

With this mixing angle α defined, we can now eval-
uate the decay rate itself, for any one of the decays:
X → J/ψρ or X → J/ψω, since they will be the same.
Therefore, we choose to work with X → J/ψω since the
combination cosα + sinα appears in both sides of the
sum rule and the result for gXψω is independent of α.
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FIG. 4: Diagrams which contribute to the OPE side of the sum rule.

In the OPE side we consider condensates up to di-
mension five , as shown in Fig. 4. Taking the limit
p2 = p′2 = −P 2 and doing a single Borel transform to
P 2 → M2, we get in the structure εανσγp′σqγp′µ (the same
considered in ref.[27]) (Q2 = −q2):

C(Q2)
(

e−m2
ψ/M2

− e−m2
X/M2

)

+ B e−s0/M2

=

(Q2 + m2
ω)Π(OPE)(M2, Q2), (64)

where

Π(OPE)(M2, Q2) =
〈q̄q〉

6
√

2π2Q2

[(

m2
0

3Q2
+

− 1

)
∫ u0

4m2
c

du e−u/M2 √

1 − 4m2
c/u

(

1

2
+

m2
c

u

)

+

−
m2

0

16

∫ 1

0
dα

1 + 3α

α
e

−m2
c

α(1−α)M2

]

. (65)

In Eq. (64)

C(Q2) =
6

sin(θ)
mωfω

fψλq

mψ(m2
X − m2

ψ)
gXψω(Q2), (66)

and B gives the contribution of the pole-continuum tran-
sitions [27, 28, 29]. s0 and u0 are the continuum thresh-
olds for X and J/ψ respectively. Notice that in Eq.(65)
we have introduced the form factor gXψω(Q2). This is
because the meson ω is off-shell in the vertex XJ/ψω.

If we parametrize C(Q2) as a monopole:

C(Q2) =
c1

Q2 + c2
, (67)

we can fit the left hand side of Eq. (64) as a function
of Q2 and M2 to the QCDSR results in the right hand
side, obtaining c1, c2 and B. In Fig. 5 we show the
points obtained if we isolate C(Q2) in Eq. (64) and vary
both Q2 and M2. The function C(Q2) (and consequently
gXψω(Q2)) should not depend on M2, so we limit our fit
region to 3.0 GeV2 ≤ M2 ≤ 3.5 GeV2 where C(Q2) is
clearly stable in M2 for all values of Q2.

We do the fitting for s1/2
0 = 4.4 GeV as the results

do not depend much on this parameter, the results are
shown bellow:

c1 = 2.5 × 10−2 GeV7,

c2 = 38 GeV2,

X+

B0s
b

s

π+

u

d

u

fall apart decays should not be possible with tetraquark 
currents with color entanglement

with mesonic currents 
the decay can proceed 
directly through the fall 
apart in its components
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From Eqs. (58) and (61) we get the following relation
between the coupling constants:

gXψωfω

gXψρfρ
=

Nω

(

cosα + sinα
)

Nρ

(

cosα − sinα
) . (62)

Using the previous result in Eq. (41) and the numerical
values for fω and fρ we have

Γ(X → J/ψ π+π−π0)

Γ(X → J/ψ π+π−)
# 0.15

(

cosα + sinα

cosα − sinα

)2

. (63)

This is exactly the same relation obtained in refs. [11, 27],
that determines α ∼ 200 for reproducing the experimen-
tal result in Eq.(1).

With this mixing angle α defined, we can now eval-
uate the decay rate itself, for any one of the decays:
X → J/ψρ or X → J/ψω, since they will be the same.
Therefore, we choose to work with X → J/ψω since the
combination cosα + sinα appears in both sides of the
sum rule and the result for gXψω is independent of α.
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FIG. 4: Diagrams which contribute to the OPE side of the sum rule.

In the OPE side we consider condensates up to di-
mension five , as shown in Fig. 4. Taking the limit
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=

(Q2 + m2
ω)Π(OPE)(M2, Q2), (64)
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+
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+
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+
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olds for X and J/ψ respectively. Notice that in Eq.(65)
we have introduced the form factor gXψω(Q2). This is
because the meson ω is off-shell in the vertex XJ/ψω.

If we parametrize C(Q2) as a monopole:

C(Q2) =
c1

Q2 + c2
, (67)

we can fit the left hand side of Eq. (64) as a function
of Q2 and M2 to the QCDSR results in the right hand
side, obtaining c1, c2 and B. In Fig. 5 we show the
points obtained if we isolate C(Q2) in Eq. (64) and vary
both Q2 and M2. The function C(Q2) (and consequently
gXψω(Q2)) should not depend on M2, so we limit our fit
region to 3.0 GeV2 ≤ M2 ≤ 3.5 GeV2 where C(Q2) is
clearly stable in M2 for all values of Q2.

We do the fitting for s1/2
0 = 4.4 GeV as the results

do not depend much on this parameter, the results are
shown bellow:
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have used the definitions:

〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p
′),

〈0|jπ5ν |π(q)〉 = iqνFπ ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p). (7)

To extract directly the coupling constant, gZcψπ, in-
stead of the form factor, we can write a sum rule at the
pion-pole [26], valid only at Q2 = 0, as suggested in [20]
for the pion-nucleon coupling constant. This method was
also applied to the nucleon-hyperon-kaon coupling con-
stant [27, 28] and to the nucleon−Λc −D coupling con-
stant [29]. It consists in neglecting the pion mass in the
denominator of Eq. (5) and working at q2 = 0. In the
OPE side only terms proportional to 1/q2 will contribute
to the sum rule. Therefore, up to dimension five the only
diagrams that contribute are the quark condensate and
the mixed condensate.

FIG. 2. CC diagram which contributes to the OPE side of
the sum rule.

As discussed in refs. [30, 31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states. By multiquark
states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
The diagram in Fig. 2 contributes only to the struc-

tures qνgµα and qνp′µp
′
α appearing in the phenomenolog-

ical side. Since structures with more momenta are sup-
posed to give better results, we choose to work with the
qνp′µp

′
α structure. Therefore in the OPE side and in the

qνp′µp
′
α structure we obtain:

Π(OPE) =
〈q̄gσ.Gq〉
12

√
2π2

1

q2

∫ 1

0
dα

α(1 − α)

m2
c − α(1− α)p′2

. (8)

Isolating the qνp′µp
′
α structure in Eq. (5) and making a

single Borel transformation to both P 2 = P ′2 → M2, we
finally get the sum rule:

A
(

e−m2
ψ/M

2

− e−m2
Zc

/M2
)

+B e−s0/M
2

=

=
〈q̄gσ.Gq〉
12

√
2π2

∫ 1

0
dα e

−m2
c

α(1−α)M2 , (9)

where s0 is the continuum threshold parameter for Zc,

A =
gZcψπλZcfψFπ (m2

Zc
+m2

ψ)

2m2
Zc
mψ(m2

Zc
−m2

ψ)
, (10)

and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
Borel transformation is done in a three-point function
sum rule [30, 32–34]. In the numerical analysis we use the
following values for quark masses and QCD condensates
[22, 35]:

mc(mc) = (1.23± 0.05) GeV,

〈q̄q〉 = −(0.23± 0.03)3 GeV3,

〈q̄gσ.Gq〉 = m2
0〈q̄q〉,

m2
0 = 0.8 GeV2. (11)

For the meson masses and decay constants we use the
experimental values [36] mψ = 3.1 GeV, mπ = 138 MeV,
fψ = 0.405 GeV and Fπ = 131.52 MeV. For the Zc mass
we use the value measured in [1]: mZc = (3899±6) MeV.
The meson-current coupling, λZc , defined in Eq.(7), can
be determined from the two-point sum rule [22]: λZc =
(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
We evaluate the sum rule in the range 2.0 ≤ M2 ≤ 3.0
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FIG. 3. Dots: the RHS of Eq.(9), as a function of the Borel
mass for ∆s0 = 0.5 GeV. The solid line gives the fit of the
QCDSR results through the LHS of Eq.(9).

GeV2, which is the range where the two-point function
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require color exchange 
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OPE side Phen. side

If X+(5568) is a genuine tetraquark state, 
only color-conected diagrams will contribute
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′),

〈0|jπ5ν |π(q)〉 = iqνFπ ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p). (7)

To extract directly the coupling constant, gZcψπ, in-
stead of the form factor, we can write a sum rule at the
pion-pole [26], valid only at Q2 = 0, as suggested in [20]
for the pion-nucleon coupling constant. This method was
also applied to the nucleon-hyperon-kaon coupling con-
stant [27, 28] and to the nucleon−Λc −D coupling con-
stant [29]. It consists in neglecting the pion mass in the
denominator of Eq. (5) and working at q2 = 0. In the
OPE side only terms proportional to 1/q2 will contribute
to the sum rule. Therefore, up to dimension five the only
diagrams that contribute are the quark condensate and
the mixed condensate.

FIG. 2. CC diagram which contributes to the OPE side of
the sum rule.

As discussed in refs. [30, 31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states. By multiquark
states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
The diagram in Fig. 2 contributes only to the struc-

tures qνgµα and qνp′µp
′
α appearing in the phenomenolog-

ical side. Since structures with more momenta are sup-
posed to give better results, we choose to work with the
qνp′µp

′
α structure. Therefore in the OPE side and in the

qνp′µp
′
α structure we obtain:
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12
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∫ 1
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. (8)

Isolating the qνp′µp
′
α structure in Eq. (5) and making a

single Borel transformation to both P 2 = P ′2 → M2, we
finally get the sum rule:
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where s0 is the continuum threshold parameter for Zc,

A =
gZcψπλZcfψFπ (m2
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+m2

ψ)

2m2
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, (10)

and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
Borel transformation is done in a three-point function
sum rule [30, 32–34]. In the numerical analysis we use the
following values for quark masses and QCD condensates
[22, 35]:

mc(mc) = (1.23± 0.05) GeV,

〈q̄q〉 = −(0.23± 0.03)3 GeV3,

〈q̄gσ.Gq〉 = m2
0〈q̄q〉,

m2
0 = 0.8 GeV2. (11)

For the meson masses and decay constants we use the
experimental values [36] mψ = 3.1 GeV, mπ = 138 MeV,
fψ = 0.405 GeV and Fπ = 131.52 MeV. For the Zc mass
we use the value measured in [1]: mZc = (3899±6) MeV.
The meson-current coupling, λZc , defined in Eq.(7), can
be determined from the two-point sum rule [22]: λZc =
(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
We evaluate the sum rule in the range 2.0 ≤ M2 ≤ 3.0
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FIG. 3. Dots: the RHS of Eq.(9), as a function of the Borel
mass for ∆s0 = 0.5 GeV. The solid line gives the fit of the
QCDSR results through the LHS of Eq.(9).
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OPE side Phen. side

coupling constant

If X+(5568) is a genuine tetraquark state, 
only color-conected diagrams will contribute
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〈0|jψµ |J/ψ(p′)〉 = mψfψεµ(p
′),

〈0|jπ5ν |π(q)〉 = iqνFπ ,

〈Zc(p)|jα|0〉 = λZcε
∗
α(p). (7)

To extract directly the coupling constant, gZcψπ, in-
stead of the form factor, we can write a sum rule at the
pion-pole [26], valid only at Q2 = 0, as suggested in [20]
for the pion-nucleon coupling constant. This method was
also applied to the nucleon-hyperon-kaon coupling con-
stant [27, 28] and to the nucleon−Λc −D coupling con-
stant [29]. It consists in neglecting the pion mass in the
denominator of Eq. (5) and working at q2 = 0. In the
OPE side only terms proportional to 1/q2 will contribute
to the sum rule. Therefore, up to dimension five the only
diagrams that contribute are the quark condensate and
the mixed condensate.

FIG. 2. CC diagram which contributes to the OPE side of
the sum rule.

As discussed in refs. [30, 31], large partial decay widths
are expected when the coupling constant is obtained from
QCDSR in the case of multiquark states. By multiquark
states we mean that the initial state contains the same
number of valence quarks as the number of valence quarks
in the final state. This happens because, although the
initial current, Eq. (1), has a non-trivial color structure,
it can be rewritten as a sum of molecular type currents
with trivial color configuration through a Fierz transfor-
mation. To avoid this problem we follow refs. [30, 31],
and consider in the OPE side only the diagrams with non-
trivial color structure, which are called color-connected
(CC) diagrams. In the present case the CC diagram that
contributes to the OPE side at the pion pole is shown in
Fig. 2. Possible permutations (not shown) of the diagram
in Fig. 2 also contribute.
The diagram in Fig. 2 contributes only to the struc-

tures qνgµα and qνp′µp
′
α appearing in the phenomenolog-

ical side. Since structures with more momenta are sup-
posed to give better results, we choose to work with the
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α structure. Therefore in the OPE side and in the

qνp′µp
′
α structure we obtain:
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and B is a parameter introduced to take into account
single pole contributions associated with pole-continuum
transitions, which are not suppressed when only a single
Borel transformation is done in a three-point function
sum rule [30, 32–34]. In the numerical analysis we use the
following values for quark masses and QCD condensates
[22, 35]:

mc(mc) = (1.23± 0.05) GeV,

〈q̄q〉 = −(0.23± 0.03)3 GeV3,

〈q̄gσ.Gq〉 = m2
0〈q̄q〉,

m2
0 = 0.8 GeV2. (11)

For the meson masses and decay constants we use the
experimental values [36] mψ = 3.1 GeV, mπ = 138 MeV,
fψ = 0.405 GeV and Fπ = 131.52 MeV. For the Zc mass
we use the value measured in [1]: mZc = (3899±6) MeV.
The meson-current coupling, λZc , defined in Eq.(7), can
be determined from the two-point sum rule [22]: λZc =
(1.5 ± 0.3) × 10−2 GeV5. For the continuum threshold
we use s0 = (mZc +∆s0)2, with ∆s0 = (0.5± 0.1) GeV.
We evaluate the sum rule in the range 2.0 ≤ M2 ≤ 3.0
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FIG. 3. Dots: the RHS of Eq.(9), as a function of the Borel
mass for ∆s0 = 0.5 GeV. The solid line gives the fit of the
QCDSR results through the LHS of Eq.(9).
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u0 = M2
X

OPE side:

1.0  M2  2.2 GeV2very stable in the range:
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Dias, Khemchandani, Martínez Torres, MN, Zanetti: arXiv:1603.02249

OPE sidePhen. side
=
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Dias, Khemchandani, Martínez Torres, MN, Zanetti: arXiv:1603.02249

using mX=5568 MeV we get:

OPE sidePhen. side
=
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�(X±(5568) ! B0
s⇡

±) = (20.4± 8.7) MeV

�(X±(6390) ! B0
s⇡

±) = (30.1± 8.6) MeV

using the results from a trustable QCDSR: 
mX=(6.39±0.10) GeV and s0=(48±2) GeV2 we get:

but this is not the total width since there are more 
open channels now (BK, B*K*, Bsρ+)!
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�(X±(5568) ! B0
s⇡

±) = (20.4± 8.7) MeV

�(X±(6390) ! B0
s⇡

±) = (30.1± 8.6) MeV

compatible with exp. width, but...

using the results from a trustable QCDSR: 
mX=(6.39±0.10) GeV and s0=(48±2) GeV2 we get:

but this is not the total width since there are more 
open channels now (BK, B*K*, Bsρ+)!
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• Lots of exotic states in the last  years: a new 
spectroscopy?

• Discovery of X+(5568) represents a challenge 

• We need better bounds in the experimental 
reports

Conclusions
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