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The Nuclear Landscape and the Big Questions

« Where did the atoms and-atomic nuclei come from? 5
- How are the nuclei of atoms made and organized?, -« - Ry
« What are the fundamental particles and forceg.at’*‘ ' = R

work inside atomic nuclei? e i S '

What are practical and scient‘iéi.g uSes of nucl
\
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Guiding principle: the scientific method...

J. Phys. G 43, 044002 (2016) |

Optimizing the cycle
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The Grand Nuclear Landscape

(f|n|te nuclei + extended nucleonic matter)
R superheavy
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Experiment

facilities, instrumentation, techniques .
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Theory

Creating unfair advantage:
the whole is greater than
the sum of its parts

Sociology of the field is changing: large multi-
institutional efforts involving strong coupling between
physics, computer science, and applied math

network

experiment

... and let us not forget about education
and training!

TALENT: Training in Advanced Low Energy T —
Nuclear Theory
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Degrees of Freedom Energy (MeV)

(U QQQ G < petmold HOW dare nUCIe| made?
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E g 4 S Hot and dense quark-gluon matter
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2 ' 'S New standard model
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- Weinberg’s Third Law of Progress in
Theoretical Physics:
lecti o rgggﬂf’a. The resolving power of a theoretical model
state in uranium
colietl g should always be as low as reasonably
collective coordinates Scale . .
separation possible for the question at hand
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Linking few-body with many-body

Quantified input PRC 91, 051301(R) (2015)
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Revision of nuclear structure textbook knowledge

E(2!)/(keV)

Phys. Scripta 91, 053003 (2016)

masses
charge radii
excited states

Developing new
nuclear paradigms

34

Nature Physics 12, 594 (2016)
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New shell closures at N = 32 & 347
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Revision of nuclear structure textboBoBlﬁ knowledge

Si A —experiment
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« 180 is a textbook doubly-magic nucleus | e} _— S LT
«  2425260: open quantum systems 4 b s
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What are the limits of atoms and nuclei? Do very long-lived superheavy

nuclei exist in nature? ) > . >
Structure of nuclei at the limit of mass and charge Morimoto /| Hinde

Very relativistic atoms with Za — 1 2L L L L LI BN S S B
« Many new superheavy isotopes found 10> E—1 min 112 =
« Z=113, 115, 117 confirmed; names proposed C ’g “3114 -
» Unique spectroscopic data above Z>102 = s 115 -
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Large Amplitude Collective Motion

exceedingly difficult, many fundamental questions remain unsettled

Quasifission in 50Ti+249Bk * Fusion

Oo (P O » Fission

« Coexistence phenomena
Spontaneous fission yields
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Quest for understanding the neutron-rich matter on Earth and in
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How can nuclei be exploited to reveal the fundamental symmetries of nature?

Current© predictions™ =~ oy
in the equations of motion, resulting in states,,

configurations and their iterations. Usually, i 1 here is generally significant
variation among different

calculations of the nuclear matrix
elements for a given isotope. For
consideration of future experiments
and their projected sensitivity it
would be very desirable to reduce the
uncertainty in these nuclear matrix
elements.” (Neutrinoless Double
Beta Decay NSAC Report 2014)

Precision calculations of nuclear matrix elements based on accurate
models of nuclear interactions and currents (Ovpf3, EDM, anapole...)

MICHIGAN STATE 4 .
UNIVvE RSy &2 W. Nazarewicz, INPC 2016 14




Uncertainty quantification

“Remember that all models are wrong; 5"
the practical question is how wrong do Eij@i??f% 2
they have to be to not be useful” (E.P. =i = =i = !
Box) S N
| PRL 114, 122501 (2015) Neutron Number
- Regression analysis [ 240p,
* Bayesian inference =
« Extrapolations %
 Model mixing 22
* Information content of new i _;JE/EBE?M
measurements - i ®

Quadrupole moment Q,, (b)
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In many cases, nuclear modeling MUST involve massive extrapolations...

S > L > PRL 116, 121101 (2016)
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The Future
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Some Anticipated NS&R Greatest Science Hits: by the 28" INPC

e Accessing the neutron drip line up to Mg to test models of nuclear binding with a strong focus
on long isotopic chains, in particular Z= he existence (non-existence) of 280 will
be confirmed. Data on very neutgs ost ab-initio, DFT, and reaction
models, and help quantifying »

nical characterization of
will be discovered.

* We will make first direct c
superheavy elements wit

irst time for mass and
to test many critical

* Significant regions of the
decay-property measure
aspects of r-process mod

d three-nucleon forces from

* We will improve limits on
and electric dipole

measurement of the size of%
polarizability in neutron-rich

* We will compute nuclear matrix ele
theoretical uncertainties.
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Some Anticipated NS&R Greatest Science Hits: by the 30t INPC

Delineation of the neutron drip line up to Zr (A=120) to test models of nuclear binding. Key
isotopic chains will be measured fro ' ine to neutron drip-line

Neutron pairing will be exploreg nuclei with extreme neutron skins.

We will know whether

mass and decay-property
d 78Ni, 132Sn, and in the

» Key regions of the r-proce
measurements. In partic
region of N=126.

on drip-line, will become
perallowed Gamow-Teller
Mt the nuclear surface.

* A new region of nuclear
accessible up to 199Sn. Ne
decays, the role of proton¥§

. ill be computed ab-initio.
goted in inter-nucleon interactions
, ab-initio theories, and neutron star

» Key light-ion fusion reaction
Spectroscopic-quality nuclear e
and optimized to data on nuclei wit
observations — will be developed.
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Looking into the crystal ball: the 32" INPC and beyond

» We will understand the QCD origin of nuclear forces. We will deve}op the predictive ab-
initio description of light and medium-mass nuclei and thei ctibns, including electroweak
probes. We will construct the spectroscopic-qualit (re@y ensity functional that will
extrapolate in mass, isospin, and angular r@@e . We will develop the comprehensive
reaction theory consistent with nuaI r ure. We will have a comprehensive description
of weak transitions in nu (‘g\ié‘w@u e them in multi-dimensional stellar evolution
simulations. \N

r?
» We will know if very long-lived superheavy elements exii/(' re. We will understand the
mechanism of clustering and other aspects of op @@1 -pody systems. We will know

whether proton-neutron superfluidity existsc @hite nuclei. We will know the nuclear
equation of state for normal and %ngoﬂ atter from 0.1 to twice the saturation density.

* We will have a quantitatl\(éQh@roscopic model of fission that V\’/{H;provide the missing data
for nuclear security, astrophysics, and energy researc é@l | predict important fusion

reaction rates important for fusion research a% orensics. We will improve the
sensitivity of EDM searches in atoms by, o orders of magnitude over current limits.
<
et &
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Nuclei Matter
Our current understanding of nuclei has benefited from technological improvements in
experimental equipment and accelerators that have expanded the range of available isotopes and
allowed individual experiments to be performed with only a small number of atoms. Concurrent
advances in theoretical approaches and computational science have led to a more detailed
understanding and pointed toward which nuclei and what phenomena to study, creating conditions

for major advances.
Profound intersections
» Astrophysics
* Fundamental Symmetries
 Complex systems
« Computing
How can the knowledge and technological progress provided by nuclear
physics best be used to benefit society?
» Energy (fission, reactions, decays...)
» Security (stewardship, forensics, detection...) THE FUTURE
» Isotopes (medicine, industry, defense, applied research...) ST
* Industry (radiation, ion implantation...)
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Backup
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Rooting nuclei in QCD Detmold >
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Nuclear force/phase shifts from lattice QCD
PRL 111, 112503 (2013); PRD 93, 114511 (2016)
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LQCD predictions for magnetic moments A<4
PRL113, 252001 (2014)
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n-p mass difference from LQCD

AZ — experiment
8r —— A= e QCD+QED
®
— 61 .
> AD
=, —
4+ |
z | AZ,, |
oL AN ¢ .
| —— Acg -
o Science 347, 1452 (2015) —-

“The neutron—proton mass difference, one of the
most consequential parameters of physics, has now
been calculated from fundamental theories. This
landmark calculation portends revolutionary progress
in nuclear physics.” Wilczek, Nature 520, 303 (2015)
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High Performance Computing and Nuclear Theory:
Towards the Exascale

“High performance computing
provides answers to questions
that neither experiment nor
analytic theory can address;
hence, it becomes a third leg
supporting the field of nuclear
physics.” (NAS Decadal Study

Report)

e
c
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()
Q
X
(V)

Towards predictive capability...
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The frontier: calcium isotopes

Unexpectedly large charge radii of neutron-

rich calcium isotopes
Nature Physics 12, 594 (2016)

5
! g

Linking ab-initio with DFT

Ry (fm)

40 42 44 46 48 50 52 54
Mass number A

e PEMIment (this work) |

[ Ab initio
(this work) DFT cl
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bl Periodic Table of the Elements 2017 |"”
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How can nuclei be exploited to reveal the fundamental symmetries of nature?
Atomic electric dipole moment: the violation of CP-symmetry is responsible for the
fact that the Universe is dominated by matter over anti-matter

» Closely spaced parity doublet gives rise to enhanced
electric dipole moment

» Large intrinsic Schiff moment st Time
o 199Hg (Seattle, 1980’s — present) Ma3 EDM
g © >2°Ra (ANL, KVI) ‘ ‘
2% PRL 114, 233002 (2015) d<5x10%2e cm + +
o 223Rn at TRIUMF (E929) Qi‘__‘i") Qa-fii)

o FRIB
« 238 beam, beam dump recovery: 22°Ra: 6x109/s,
223Rn: 8x107/s
« 232Th beam: 22°Ra: 5x1019/s, 223Rn: 1x109/s
* 10"%/s w ISOL target FRIB upgrade

nige Spin
I \ ' 4 I

Precision calculations of nuclear matrix elements based on accurate
models of nuclear interactions and currents (EDM, Ov{3f3)
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Weinberg’ s Laws of Progress in Theoretical Physics
From: “Asymptotic Realms of Physics” (ed. by Guth, Huang, Jaffe, MIT Press, 1983)

First Law: “The conservation of Information” (You will get nowhere by churning
equations)

Second Law: “Do not trust arguments based on the lowest order of perturbation
theory”

Third Law: “You may use any degrees of freedom you like to describe a physical
system, but if you use the wrong ones, you’ Il be sorry!”

= 4 %
S

Patient: Doctor, doctor, it hurts when | do this!
Doctor: Then don't do that.
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Profound intersections

‘ QCD

Complex Systems ) Cosmos

Physics
of Nuclei®

S o
. c C
* Atomicand g2 « Astrophysics
Molecular Physics s S « Cosmolo
T = 9y
+ Condensed Matter o « Astronomy
. : e
Physics = » Gravitation

* Materials Science
* Quantum Chemistry

<

Particle Physics
+ Cosmology

J. Phys. G 43, 044002 (2016)
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Some nuclei are more important than others

Over the last decade, tremendous progress has been /\
(

made in techniques to produce and describe
designer nuclei, rare atomic nuclei with
characteristics adjusted to specific research needs

and applications _ @
-4
£

CONCEPT PREDICTION FABRICATION
J. Phys. G 43, 044002 (2016)
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