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« Large amplitude collective motion
— Determination of optimal reaction path

— “Macroscopic” quantities (potential, mass)
— ASCC method

* Reaction path, potential, and inertial mass

— Symmetric reaction: 8Be <> a+a
— Symmetric reaction: 32S &—-> 190+160
— Asymmetric reaction: °°Ne <-> 90+a



Microscopic determination of

reaction path
» RGM

— Assuming the “cluster configurations”

- GCM

— Assuming the “generator coordinates”

+ TDHF

— An initial state produces a reaction path.
— Not applicable to sub-barrier reaction.



Adiabatic Self-consistent Collective
Coordinate (ASCC) method

(%Matsuo, Nakatsukasa, Matsuyanagi, PTP 103, 959 (2000)

Generators for canonical variables (g,»)
are self-consistently constructed.

P5(q) = i d/dq?

(b)

P4(q) =i d/dq?

Collective submanifod spanned by
(¢,p) are determined.




ASCC method

Matsuo, Nakatsukasa, Matsuyanagi, PTP 103, 959 (2000) “Moving mean-field equation”
(Oth) 8(¥(q)|H,,(9)|¥(@)=0, H,/(q)=H-(0V/dg)O(q)
(1st)  8(W(q)|| A, (9),i0(@)|- B(@)P(q)|P()) =0
(2nd) 5((q)|[H,(9).P(@)/i]-C@)0(a) _

1

_%[[ﬁM<q>,(aV/aq>Q<q>],Q<q>]\‘P<q>>=0 _

(a) P(q) =i d/dq v

\//ﬁfé\“\\j\/‘oving RPA equation”




Collective Hamiltonian

Identification of collective canonical variables; (g,p)

Determination of the optimal reaction path

Determination of collective mass

Construction of a collective Hamiltonian
H(q.p)={¥(q.p)|H|¥(q.p))~ %B(q)p2 +V(q)

Vig)=(¥@)|H|¥@). B@)=(¥@|[A.0@)]0@]¥@)

Coordinate transformation; (g2)-(z7)




3D real space representation

y[fm]

S XTfm]

* 3D space discretized in lattice
* BKN functional

* Moving mean-field eq.:
Imaginary-time method

* Moving RPA eq.: Finite
amplitude method (PRC 76,

024318 (2007) )
Wen, Nakatsukasa, arXiv: 1608.02294

“ Wen, Washiyama, Ni, Nakatsukasa,

Acta Phys. Pol. B Proc. Suppl. 8, 637 (2015)



8Be: Canonical generators
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tion about the symmetry axis (z axis

pear. In Fig. 2 the calculation produces
modes of excitation around 2.8 MeV w¥ (7)

tion matrix element of theAK = 1 quadr
Q2:|:1 = fT2Y2:|:1(72)’¢T(77)’¢(77)d77 The:

these rotational modes comes from the -
discretizing the space. Besides these fi

the lowest mode of excitation turns out t

op(r)




8Be: Collective potential

distance K = (Y(q)|H|Y(g)) with Eq.
. _ shows the obtained potential energy a
@)= DHY(9) collective path. As a reference, we alsc
Pl) = g Coulomb potential between two « part;
\/—“\\\ R, 4e?/R+2E,,, where E, is the calculaf
energy of the isolated « particle. Appar

totically approaches the pure Coulomb p

a’s get closer, the potential starts to d
Coulomb potential at R < 6 fm and fin



SBe: Collective inertial mass

0k*(R) = 2M(R) E

L

E2(R) =4m<{ E — -

jelsS puno

wher® k(R) and k.(R) a

radial motion with and v

distance K = (Y(q)|H|Y(q)) with Eq.

shows the obtained potential energy a
collective path. As a reference, we alsc
Coulomb potential between two a parti
R, 4e?/R+2E,, where E, is the calculal
energy of the isolated « particle. Appar
totically approaches the pure Coulomb p
a’s get closer, the potential starts to d
Coulomb potential at R < 6 fm and fin

Reduced
mass



a + a scattering (phase shift)
(I

kQNRu)cﬁ%\Méﬁb%E shiftt) — =

4e2 (L + %)

2Dy _ _ _
kZ(R) = 4m {E 7 yr—s

where k(R) and k.(R) are the wave

radial motion with and without the n

Dashed: Constant reduced /

Mass
( M(R)-2m)



e o B3€ GHEFCranking

perturbative and perturbative cranking
are significantly different. For instance,
with (Joo constraint suggest prominent
in MgP(P)(R). However, the peak po
different. It should be noted that the
should not be generalized to other enery Perturbative cranking formula
tionals, because the BKN interaction k

mean fields.

Cranking formula for translational mass
e.q.) Mla=3.1 mfor EIBKN [p]+B(pr—/12 ) with £=50 MeV fm?®



160+16Q — 32S: Reaction path

Starting from two %O configuration

Y (fm)
A RO OO O a




1860+160Q — 32S: Collective potential
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160+16Q — 32S: Collective mass
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X (fm)

ONe: Reaction path

Starting from the ground state of 2°Ne

The final state
automatically
becomes 1°0 + a




“ONe: r?Y,,-constrained cal.

X {fm)

Discontinuous jump

R [fm]



2ONe: Collective potential

’ Continuous curve
gy o el without a jump

X {fm)

R [fm]



Mass [nucloen mass]

20Ne: Collective inertial mass
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Summary

 Reaction path and inertial mass
— Scattering/fusion/fission reaction
— Determination of the reaction path

— Inertial mass with proper account of time-odd effects (different from the
cranking/GOA inertia)

« Applications
— Symmetric mode: a+a < 8Be
« Reaction path: Quadrupole vib. into rel. motion between two a’s
— Symmetric mode: 160 + 160 &> 325(SD)
« Reaction path: Two ®O’s into the superdeformed 32S
— Asymmetric mode: 2°Ne €<-> 0O+a
« Reaction path: Octupole vib. into 10 + a






20Ne: Collective inertial mass
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Constrained Hartree-Fock + cranking inertial mass

larger than the ADUU Inertia. Lhe se
perturbative and perturbative cranking
are significantly different. For instance,
with Q29 constraint suggest prominent

n MgP(H(R). However, the peak po
different. Tt should be noted that the ~ATDHF method

should not be generalized to other ener; .
tionals, because the BKN interaction F (Goeke, Gruemmer’ Reinhard

mean fields. 1 983)1161’L1d1 L1ASS 1LICIeases arasuicaily. L Is
from the result of the former calculatic
reason of which is currently under invest;
encounter a difficulty to obtain the collec
asymptotic region at large R. A larger r
finer mesh size seems to be needed to obt:
in the asymptotic region and to reprod

mass 2m. We should also mention that 1
with dV/dR = 0 is extremely difficult to



Translational motion of a particle

which is degenerated with the othe
modes along the x and y axis at abou
D'p(%lﬁlatl n of Fig. (1) the space is discre
Hg io 0.8 fm. Wlth finer mesh size

Mo tional motion approaches to (
pact nature of alpha particle, the n

is 20 MeV higher than these translaf

CoM

can be picked out with non-zero valu
which is degenerated with the othe
modes along the x and y axis at abou
culation of Fig. (1) the space is discre
equal to 0.8 fm. With finer mesh size
translational motion approaches to |
pact nature of alpha particle, the n
is 20 MeV higher than these transla



“INe<->1°0 + a

Preliminary result
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« Constraint operator
— LHE generator
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Choice of variables (R,P)
Ris defined by R=|R,-R,

Olo O | O»

Space “L” and “R”

P is calculated from current in L & R

This definition is questionable after two
nuclel touch each other.

Neead reliahle definitfinn of canonical



inertal Imdoss & CO0Ordiriate

Finding decoupled canonical variables l[&ssuming the collective variables

(fa’na) —(¢,p:q' ;) R = R(&) R is chosen by hand

. 1
H(&.m)= %B“f"@nanﬁ +V(§) H (& 7) =2 BT E)m s +V(E)
1~ 2
2 _ — —B(R)P} +V(R
-~ B’ +V(@)+ HEgep) y BROF+V(R)
(map from g to R) 1 i SR AR
= —B(R)F; +V(q(R)) B(R) = B
2 (R) Py (&)
2
B(R)=(%) B(9) ~ =B(R)+§—§;—SB‘7@)
7 B(R) = B(R) 707




Low

| | v .
Reaction path -
I Yoy, constrained states
w0 b ASCC - -»
I e R
————— =N
; - B .ﬁ'!. .~ - ]
= 95 -
= |
C Low W -0 b " o~
"' 105 F
e a0 b
—— % 115
4
120 . . .
\ 0 500 1000 1500 2000




