Nuclear reaction path and inertial mass in the self-consistent collective coordinate method

> Kai Wen Takashi Nakatsukasa

Center for Computational Sciences, University of Tsukuba

INPC2016, Adelaide, Australia, September 11-16, 2016

This work was supported in part by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

Contents

- Large amplitude collective motion
 - Determination of optimal reaction path
 - "Macroscopic" quantities (potential, mass)
 - ASCC method
- Reaction path, potential, and inertial mass
 - Symmetric reaction: ⁸Be $\leftarrow \rightarrow \alpha + \alpha$
 - Symmetric reaction: ${}^{32}S \leftrightarrow {}^{16}O{}^{+16}O$
 - Asymmetric reaction: ²⁰Ne $\leftarrow \rightarrow$ ¹⁶O+ α

Microscopic determination of reaction path • RGM

- Assuming the "cluster configurations"
- GCM
 - Assuming the "generator coordinates"
- TDHF
 - An initial state produces a reaction path.
 - Not applicable to sub-barrier reaction.

Adiabatic Self-consistent Collective Coordinate (ASCC) method

P(q) = i d/dq

(a)

Generators for canonical variables (*q*,*p*) are self-consistently constructed.

Matsuo, Nakatsukasa, Matsuyanagi, PTP 103, 959 (2000)

Collective submanifod spanned by (q,p) are determined.

ASCC method

Collective Hamiltonian

- Identification of collective canonical variables; (q,p)
- Determination of the optimal reaction path
- Determination of collective mass
- Construction of a collective Hamiltonian $H(q,p) = \langle \Psi(q,p) | \hat{H} | \Psi(q,p) \rangle \approx \frac{1}{2} B(q) p^{2} + V(q)$ $V(q) = \langle \Psi(q) | \hat{H} | \Psi(q) \rangle, \quad B(q) = \langle \Psi(q) | [[\hat{H}, \hat{Q}(q)], \hat{Q}(q)] | \Psi(q) \rangle$

Coordinate transformation; $(q,p) \rightarrow (R,P)$

3D real space representation

- 3D space discretized in lattice
- BKN functional
- Moving mean-field eq.: Imaginary-time method
- Moving RPA eq.: Finite amplitude method (PRC 76, 024318 (2007))

Wen, Nakatsukasa, arXiv: 1608.02294 Wen, Washiyama, Ni, Nakatsukasa, Acta Phys. Pol. B Proc. Suppl. 8, 637 (2015)

⁸Be: Canonical generators

δρ(r`

tion about the symmetry of the ground z tion about the symmetry axis (z axis) pear. In Fig. 2 the calculation produces modes of excitation around 2.8 MeV with $\hat{p}(r)$ tion matrix element of the K = 1 quadr $\hat{Q}_{2\pm 1} \equiv \int r^2 Y_{2\pm 1}(\hat{r}) \hat{\psi}^{\dagger}(\vec{r}) d\vec{r}$. The these rotational modes comes from the : discretizing the space. Besides these find the lowest mode of excitation turns out the

⁸Be: Collective potential distance $R \equiv \langle \psi(q) | R | \psi(q) \rangle$ with Eq.

• $V(q) = \Psi(q) H \Psi(q)$

distance $R \equiv \langle \psi(q) | R | \psi(q) \rangle$ with Eq. shows the obtained potential energy a collective path. As a reference, we also Coulomb potential between two α parti R, $4e^2/R + 2E_{\alpha}$, where E_{α} is the calculat energy of the isolated α particle. Appar totically approaches the pure Coulomb p α 's get closer, the potential starts to d Coulomb potential at R < 6 fm and fin

⁸Be: Collective inertial mass

т

distance $R \equiv \langle \psi(q) | R | \psi(q) \rangle$ with Eq. shows the obtained potential energy a collective path. As a reference, we alsc Coulomb potential between two α parti R, $4e^2/R + 2E_{\alpha}$, where E_{α} is the calculat energy of the isolated α particle. Appar totically approaches the pure Coulomb p α 's get closer, the potential starts to d Coulomb potential at R < 6 fm and fin

Reduced mass

$\alpha + \alpha \text{ scattering (phase shift)}$ $k^{2} \text{Rected Mphase Shift} - \frac{(I)}{4}$ $k^{2} (R) = 4m \left\{ E - \frac{4e^{2}}{R} - \frac{(L + \frac{1}{2})}{4mR^{2}} \right\}$

where k(R) and $k_c(R)$ are the wave radial motion with and without the n

Dashed: Constant reduced

mass

 $(M(R) \rightarrow 2m)$

larger than Beic CHFT Cranking perturbative and perturbative cranking are significantly different. For instance, with Q_{20} constraint suggest prominent in $M_{\rm cr}^{\rm NP(P)}(R)$. However, the peak point different. It should be noted that the should not be generalized to other energe Perturbative cranking formula tionals, because the BKN interaction h mean fields.

Cranking formula for translational mass e.g.) $M\downarrow\alpha=3.1 m$ for $E\downarrow BKN [\rho]+B(\rho\tau-jt^2)$ with B=50 MeV fm⁵

$^{16}O+^{16}O \rightarrow ^{32}S$: Reaction path Starting from two ^{16}O configuration

$^{16}O+^{16}O \rightarrow ^{32}S$: Collective potential

$^{16}O+^{16}O \rightarrow ^{32}S$: Collective mass

²⁰Ne: Reaction path

Starting from the ground state of ²⁰Ne

²⁰Ne: r²Y₂₀-constrained cal.

²⁰Ne: Collective potential

²⁰Ne: Collective inertial mass

Summary

- Reaction path and inertial mass
 - Scattering/fusion/fission reaction
 - Determination of the reaction path
 - Inertial mass with proper account of time-odd effects (different from the cranking/GOA inertia)
- Applications
 - Symmetric mode: $\alpha + \alpha \leftrightarrow Be$
 - Reaction path: Quadrupole vib. into rel. motion between two α's
 - − Symmetric mode: ${}^{16}O + {}^{16}O \leftrightarrow {}^{32}S(SD)$
 - Reaction path: Two ¹⁶O's into the superdeformed ³²S
 - − Asymmetric mode: ²⁰Ne \leftarrow → ¹⁶O+α
 - Reaction path: Octupole vib. into ${}^{16}O + \alpha$

²⁰Ne: Collective inertial mass

Constrained Hartree-Fock + cranking inertial mass

larger than the ASCC mertia. The seperturbative and perturbative cranking are significantly different. For instance, with \hat{Q}_{20} constraint suggest prominent in $M_{\rm cr}^{\rm NP(P)}(R)$. However, the peak podifferent. It should be noted that the should not be generalized to other energy tionals, because the BKN interaction h mean fields.

ATDHF method

(Goeke, Gruemmer, Reinhard

1983) nertial mass increases drastically. This from the result of the former calculatio reason of which is currently under investi encounter a difficulty to obtain the collect asymptotic region at large R. A larger r finer mesh size seems to be needed to obtain the asymptotic region and to reprodumass 2m. We should also mention that t with dV/dR = 0 is extremely difficult to the second sec

Translational motion of α particle

which is degenerated with the othe modes along the x and y axis at abou Dipole lation of Fig. (1) the space is discre Quadrupple equal to 0.8 fm. With finer mesh size translational motion approaches to (pact nature of alpha particle, the n is 20 MeV higher than these translat can be picked out with non-zero value which is degenerated with the other modes along the x and y axis at about culation of Fig. (1) the space is discreequal to 0.8 fm. With finer mesh size translational motion approaches to 0 pact nature of alpha particle, the mis 20 MeV higher than these translation

CoM

r Y₂₀ constrained states -80 ASCC -85 Constraint operator -90 -95 E -100 -90 - LHE generator – constrained - IS Quadrupole op. -105 - IS Octupole op. constrained -110• Different path -115 -12050 100150200250300 350 400 450 r²₂₀ constrained states -75 Y_{20}^{∞} constrained states ASCC -80 -85 E [MeV] -90 -95 -100constrained -105 -110 constrained -115

-120

• *R* is defined by $R = |R_R - R_L|$

- *P* is calculated from current in *L* & *R*
- This definition is questionable after two nuclei touch each other.
- Need reliable definition of canonical

inertial mass & coordinate transf Finding decoupled canonical variables Assuming the collective variables $\left(\xi^{\alpha},\pi_{\alpha}\right) \rightarrow (q,p;\overline{q}^{i},\overline{p}_{i})$ $R = R(\xi)$ R is chosen by hand $H(\xi, \pi) = \frac{1}{2}B^{\alpha\beta}(\xi)\pi_{\alpha}\pi_{\beta} + V(\xi)$ $\overline{H(\xi,\pi)} = \frac{1}{2}B^{\alpha\beta}(\xi)\pi_{\alpha}\pi_{\beta} + V(\xi)$ $\Rightarrow \frac{1}{2}\tilde{B}(R)P_R^2 + V(R)$ $\approx \frac{1}{2}B(q)p^2 + V(q) + H(\overline{q}, p)$ (map from q to R) $\Rightarrow \frac{1}{2}B(R)P_R^2 + V(q(R))$ $\tilde{B}(R) = \frac{\partial R}{\partial \xi^{\alpha}} \frac{\partial R}{\partial \xi^{\beta}} B^{\alpha\beta}(\xi)$ $B(R) = \left(\frac{\partial R}{\partial a}\right)^2 B(q)$ $= B(R) + \frac{\partial R}{\partial \overline{a}^{i}} \frac{\partial R}{\partial \overline{a}^{j}} B^{ij}(\overline{q})$ $B(R) \neq \tilde{B}(R)$

