Multiple Coulomb Excitation and Transfer Studies beyond N=40

Dennis Mücher Physics Department, University of Guelph TRIUMF

Bundesministerium für Bildung und Forschung

"Shape coexistence is the portal to deformation" (A. Poves)

$$\begin{array}{l} |0_{1}^{+}\rangle = & \alpha \left|0\right\rangle + \beta \left|\uparrow\downarrow\right\rangle \\ |0_{2}^{+}\rangle = -\beta \left|0\right\rangle + \alpha \left|\uparrow\downarrow\right\rangle \end{array}$$

shell model: $\alpha^2 \cong 10\%$ two-neutron transfer: $\alpha^2 \cong 75 \%$

K. Wimmer et al. PRL 105, 252501 (2010) J. A. Lay et al., PRC 89, 034618 (2014) E. Caurier F. Nowacki and A. Poves, PRC 90, 014302 (2014)

Z=8-20

2s

N=8-20

z	66Zn STABLE 27.73%	67Zn STABLE 4.04%	68Zn STABLE 18.45%	69Zn 56.4 M β-: 100.00%	70Zn ≥2.3E+17 Y 0.61% 2β-	712n 2.45 M β-: 100.00%	72Zn 46.5 H β-: 100.00%	732n 23.5 S β-: 100.00%	74Zn 95.6 S β-: 100.00%
29	65Cu	66Cu	67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu
	STABLE	5.120 Μ	61.83 H	30.9 S	2.85 M	44.5 S	19.4 S	6.63 S	4.2 S
	30.85%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
28	64Ni	65Ni	66Ni	671Ni	68Ni	69Ni	70Ni	71Ni	72Ni
	STABLE	2.5175 H	54.6 H	21 S	29 S	11.2 S	6.0 S	2.56 S	1.57 S
	0.9255%	β-: 100.00%	β-: 100.00%	β-: 100.00%5	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
27	63Co 27.4 S β-: 100.00%	64Co 0.30 S β-: 100.00%	65Co 1.16 S β-: 100.00%	66Co 0.20 S β-: 100.00%	67Co 0.425 S β-: 100.00%	68Co 0.199 \$ β-: 100.00%	69Co 229 MS β-: 100.00%	70Co 108 MS β-: 100.00%	71Co 80 MS β-: 100.00% β-πs 6.00%
26	62Fe	63Pe	64Fe	65Pe	66Fe	67Fe	68Fe	69Fe	70Fe
	68 S	6.1 S	2.0 S	0.81 S	440 MS	0.40 S	180 MS	110 MS	71 MS
	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%				
	36	37	38	39	40	41	42	43	N

role of $p(f_{7/2}) - n(g_{9/2})$ in zinc isotopes around N=40:

- A. Lisetskiy et al., PRC 70, 044314, 2004
- O. Sorlin et al. PRL 88, 092501, 2002
- D. Muecher at al. PRC 79, 054310, 2009

2p 1

Z=8-20

N=8-20

Z=20-38

Z=20-38

ЭE

↓1f

12p

1f

Inelastic Neutron Scattering, University of Kentucky

production of monoenergetic neutrons: ${}^{3}H(p,n) {}^{3}He$ $0.5 < E_n < 5.5 \text{ MeV } 50 keV < \Delta E_n < 100 keV$ neutron flux: 10^{7} 1/s target: 12 g ZnO angular disributions: $E_n=2.5 \text{ MeV} + E_n=3.6 \text{ MeV}$ excitation function: $E_n=1.5-4 \text{ MeV}$ (steps of 100 keV)

NushellX @ UofG with new "JJ4C" effectie interaction: modified interaction of JJ4B: ⁵⁶Ni core and $p_{3/2}$, $f_{5/2}$, $p_{1/2}$, $g_{9/2}$ D. Muecher, E. Peters, B. A. Brown et al, to be published

large magnetic moment and lack of configuration mixing for 2^+_3 state: strong M1 transition into 2^+_1 state

exp. data

 $\mu(2_{3}^{+}) = 2.02 \ \mu_{N}$

(shell model)

exp. data

large-scale SM using ⁴⁸Ca core and fpg interaction: P. C. SRIVASTAVA, *Mod. Phys. Lett. A*, **27**, 1250061 (2012) Y-rast band:

1f

2p

- protons move to 1f_{5/2} and neutrons into 1g_{9/2}
- 1f_{7/2} occupation highest for 0⁺₂,
 2⁺₃ states: type-II shell evolution!?

Z=28-38

N=20-40

2d 1

1g 1

little mixing between 2_{3}^{+} and 2_{2}^{+} states: coherent change in proton and neutron configurations, driven by the strong T=0 pn tensor interaction $1f_{5/2} - 1g_{9/2}$

• strong M1 transition $2_{4}^{+} \rightarrow 2_{3}^{+}$ of the same origin: interband M1 transitions as a robust feature to trace shape coexistence at closed shell nuclei?

• more mixing for 4⁺ states: protons have to go into $f_{5/2}$ to couple to J=4!

 \rightarrow tensor-degree of freedom controls mixing of the two configurations at N=40

z	66Zn STABLE	672n STABLE	68Zn STABLE	692n 56.4 M	70Zn ≥2.3E+17 Y	712n 2.45 M	72Zn 46.5 H	73Zn 23.5 S	74Zn 95.6 S
	21.1345	4.04%5	18.45%5	β-: 100.00%	0.61 % 2β-	β-: 100.00%	β-: 100.00 %	β-: 100.00%	β-: 100.00%
	600-	110-	620-	600-	620-	700.			
29	STABLE	5.120 M	61.83 H	30.9 S	2.85 M	44.5 S	19.4 S	6.63 S	4.2.5
	30.85%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00 %	β-: 100.00 %	β-: 100.00%	β-: 100.00%	β-: 100.00%
28	64Ni STADLE	65Ni 2 5175 H	66Ni 54.6 H	67Ni 21.5	68Ni 29 S	69Ni	70Ni 6.0.5	71Ni 2.56.5	72Ni
	0.9255%	2.517511	54.6 11	21.5	27 5	11.2.5	0.0 5	2.30 5	1.57.5
		β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
27	63Co 27.4 S	64Co 0.30 S	65Co 1.16 S	66Co 0.20 S	67Co 0.425 S	68Co 0.199 S	69Co 229 MS	70Co 108 M S	71Co 80 MS
	β-: 100.00%	β-: 100.00 %	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-π≤ 6.00%
26	62Fe	63Fe	64Fe	65Fe	66Fe	67Fe	68Fe	69Fe	70Fe
	68 S	6.1 S	2.0 S	0.81 S	440 MS	0.40 S	180 MS	110 MS	71 MS
	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
	36	37	38	39	40	41	42	43	N

slide Wolfram Korten, INPC 2016

Z=20-38

Multiple Coulomb Excitation of ⁷²Zn with MINIBALL at ISOLDE

Standard Coulex setup

 Fixed CD target distance (θ_{lab} = 16° - 54°)

⁷²Zn mean beam intensity (MINIBALL): $(3.5 \pm 0.3) \cdot 10^7$ pps

- FCD with variable target distance
- Detectors in backward direction
 - $\rightarrow \textbf{Quadrupole moments}$

Doppler Corrected γ -ray-Spectrum w.r.t. ⁷²Zn

Ph.D. thesis S. Hellgartner

- Development of new data-driven calibration procedure
- ⇒ Unprecedented performance of the Doppler correction: $\Delta E = 6.4 \text{ keV}$ (FWHM) at $E_{\gamma} = 653 \text{ keV}$

Doppler Corrected γ -ray-Spectrum w.r.t. ⁷²Zn

0⁺₂ → 2⁺₁ transition only visible in backward direction
 → Benefit of the new C-REX setup, no measurement with previous setup possible!

4⁺ states gain collectivity in neutron-rich Zn isotopes due to interplay $p(f_{5/2}) - n(g_{9/2})$

- inclusion of n(2d_{5/2}) seems essential using a perturbation approximation(B.A. Brown, priv. com.)
- full calculation using ⁴⁸Ca core and pf-sdg on the way:
 - P.C. Srivastava, Indian Institute of Technology, Roorkee

perturbation approach:

P . Decowski, W. Benenson, B.A. Brown and H. Nann Nuclear Physics A302 (1978) 186-204

↓1f

1 2p

1 1f

Technical University of Munich:

- S. Hellgartner + K. Nowak: ISOLDE
- K. Wimmer, R. Gernhäuser, R. Krücken

University of Kentucky:

- E. Peters
- S. W. Yates and his team

NSCL, MSU:

• B. A. Brown

Indian Institute of Technology, Roorkee

• P.C. Srivastava

Dennis Mücher Physics Department, University of Guelph TRIUMF

199195

Bundesministerium für Bildung und Forschung

"Shape coexistence is the portal to deformation"

√1d

2s

1d

(A. Poves)

$$\begin{array}{l} |0_{1}^{+}\rangle = & \alpha \left|0\right\rangle + \beta \left|\uparrow\downarrow\right\rangle \\ |0_{2}^{+}\rangle = -\beta \left|0\right\rangle + \alpha \left|\uparrow\downarrow\right\rangle \end{array}$$

shell model: $\alpha^2 \cong 10\%$

E. Caurier F. Nowacki and A. Poves, PRC 90, 014302 (2014)

Shape coexistence and the role of the tensor force

