Dynamical evolution of super-heavy systems studied using the X-ray fluorescence technique

Multi-dimensional Langevin-type equations From V. Zagrebaev et al.

POTENTIAL LANDSCAPE

An essential role in the dynamical evolution of super-heavy systems

- Pocket(s) for compound nucleus formation (fission barrier height)
- Fusion barrier height and position
- Trajectories for asymmetric and/or symmetric quasi-fission
- Trajectories for symmetric and/or asymmetric fission

X-RAY FLUORESCENCE TECHNIQUE APPLIED TO SUPER-HEAVY SYSTEMS WITH Z > 110

Reaction time

- Information on the trajectories followed (fusion-fission or quasi-fission)
- Height of the fission and fusion barriers

Atomic number of the fragments

- Coupled with mass detection, provides N/Z
- Information on nucleon exchange along the different trajectories

Reaction times for systems with Z > 110

J. Töke et al., Nucl. Phys. A440 (1985) 327

- Dominant mechanism = quasi-fission
- Most probable reaction time very short ($< 10^{-20}$ s)
- Existence of small cross-sections of fusion followed by fission for very heavy systems?

M. Morjean et al., PRL 101, 072701 (2008)

- Direct experimental evidence for long lifetime components ($t > 10^{-18}$ s) from blocking effects in single crystals
- For Z =120 and 124, evidence for long lifetime components ($t > 10^{-18}$ s) associated with asymmetric fissions
- Formation of Z = 120 and 124 with high fission barriers
- No evidence for long lifetime components for Z = 114 (²⁸⁴Fl)

M. Morjean, INPC2016

LONG LIFETIME COMPONENTS

N/Z of the fragments for systems with Z > 110

Many data for A or Z Almost no data with a simultaneous measurement of A and Z

X-ray fluorescence technique applied to super-heavy reactions

EVIDENCE FOR COMPOUND NUCLEUS FORMATION

Lifetime of a K-vacancy of the composite system $\sim 10^{-18}$ s \Rightarrow

Detection of characteristic X-ray from the composite system = Evidence for CN formation

REACTION TIME

No correlation between fission lifetime and vacancy lifetime \Rightarrow

the X_K multiplicity is a clock for the nucleus lifetime before fission

N/Z EQUILIBRIUM

Precise atomic number identification of the (quasi-)fission products

Experimental set-ups

Z = 120 characteristic X-rays

See: M.O. Frégeau et al., PRL 108, 122701 (2012)

EVIDENCE FOR K X-RAY DETECTION FROM $Z_{CN} = 120$

- Peak at the energy predicted by Multi-Configuration-Dirac-Fock calculations for the $K_{\alpha 1}$ ray from Z = 120
- Emission from a system moving at O°
- Maximum multiplicity in the Z domain exclusively
 populated by asymmetric fission and asymmetric quasifission of the composite system

Compound nucleus fission time > 10⁻¹⁸ s

Z = 114 characteristic X-rays

Quasi-fission fragment characteristic X-rays

Wed Jul 27 15:50:37 2016

Measurement of A and Z at the scission

Quasi-fission fragment characteristic X-rays

Wed Jul 13 11:09:20 2016

Fit (red continuous line) performed assuming:

- Only $K_{\alpha 1}$ and $K_{\alpha 2}$ transitions
- Energy of the transitions = energy from tables for ions with charge state 1+
- Intensity ratio between $K_{\alpha 1}$ and $K_{\alpha 2}$ fixed from tables for 1+ ions

Unambiguous determination of the most probable atomic number

N/Z equilibrium of quasi-fission fragments

Maximum cross-section for $Z_{\text{fragment}} \approx 82$

- Effect of magic number in the dynamical evolution?
- Effect of sequential fission?

Weaker effect for N = 126

N/Z of the target conserved for asymmetric fissions

Slow evolution towards N/Z of the compound nucleus for symmetric fissions?

Conclusions

X-ray fluorescence technique = powerful tool to probe the potential landscape for very heavy systems (Z > 110)

Evidence for compound nucleus formation for Z = 120

• Average fission time: $\tau_{\text{fission}} \gtrsim 10^{-18} \, \text{s}$

No evidence for Z = 114 (²⁸⁶Fl)

• $\tau_{capture}$ (Z=114) < $\tau_{capture}$ (Z=120) Preliminary result

Maximum of quasi-fission cross-section in ${}^{48}\text{Ti} + {}^{238}\text{U}$ for Z = 82

• Effect of Z magic number in the exit channel?

Strong memory of the target (projectile) N/Z for quasi-fission fragments

• Possible evolution towards the N/Z ratio of the composite system for symmetric quasi-fission

Collaborations

Experience ²³⁸ U + ⁶⁴ Ni (Ganil) GANIL IPN Orsay SPhN Saclay LPC Caen NIPNE Bucharest INFN Legnaro and Padova	
A. Chbihi	J. D. Frankland
M. F. Rivet	L. Tassan-Got
F. Dechery	A. Drouart
L. Nalpas	X. Ledoux
M. Pariog	C. Clortea
D. Dumitriu	D. Fluerasu
M. Gugiu	F. Gramegna
V. L. Kravchuk D. Fabris S. Barlini	T. Marchi A. Corsi

M. Morjean, INPC2016