Summary of heavy flavour dilepton in pp and PbPb at CMS

Dong Ho Moon for CMS Collaboration (Chonnam National University)

INPC 2016 @ *Adelaide, Australia*. 15th September, 2016

Study Motivation CMS Experiment Results in pp and PbPb Summary

Hello ⁽²⁾ (Yellow) Plot for PbPb in CMS

Hello ⁽²⁾ (Yellow) Plot for PbPb in CMS

Quarkonia Measurement in Heavy-ion Collisions

- Quarkonia are wonderful probe of Quark-Gluon-Plasma (QGP)
 - Produced in early stage of collisions with large momentum transfer in gluongluon fusion

Quarkonia Measurement in Heavy-ion Collisions

- Quarkonia production in heavyion collisions
 - Color screening : dissociated in the medium (*suppression*).
 - Sequential melting : different dissociation temperatures for different bound states (thermometer of medium)
 - **Energy loss** (landau damping)
 - Regeneration : heavy flavor quark production increases strongly with collision energy.

Charmonia	J/ψ	χ _c	ψ′(2S)		
Mass(GeV)	3.10	3.53	3.69		
ΔE (GeV)	0.64	0.20	0.05		
T_{d}/T_{c}	2.1	1.16	1.12		
Bottomonia	Y (1S)	Y(2S)	Y(3S)		
Mass(GeV)	9.46	10.0	10.36		
ΔE (GeV)	1.10	0.54	0.20		
T _d /T _c	> 4.0	1.60	1.17		

QGP occurs

CMS Detector

Complimentary acceptance for LHC detectors

• High p_T : hint of path-length dependence.

INPC 2016 @ Adelaide

12

Non-prompt J/ψ

• Mass ordering $R_{AA}(B) > R_{AA}(D)$: predicted by dead cone effect.

INPC 2016 @ Adelaide

13

central (20%) PbPb is ~2 times smaller than that in pp.

15

Dong Ho Moon

- For $3 < p_T < 30$ GeV/c in 1.6 < |y| < 2.4, $R_{\psi(2S)}$ in central (20%) PbPb is \sim 5 times larger than that in pp with larger systematic error.
- For $6.5 < p_T < 30$ GeV/c in |y| < 1.6, $R_{\psi(2S)}$ in central (20%) PbPb is ~2 times smaller than that in pp.
- Indication of $\psi(2S)$ being less suppressed than J/ψ (<2 σ effect) at low p_T in the most central events: Need more J/ψ statistics during LHC Run II.

Bottomonia in PbPb collisions

Bottomonia in PbPb at CMS

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{MB}} \frac{N_{PbPb}}{N_{pp}} \frac{\varepsilon_{pp}}{\varepsilon_{PbPb}}$$

- Significant suppression of Υ (1S, 2S, 3S) at PbPb collisions.
- Expected hierarchy in the suppression of the states with different binding energies.

Bottomonia in PbPb

CMS PAS-15-001

- Centrality integrated results: γ states suppressed sequentially (0-100%)
 - $-R_{AA}[\Upsilon(1S)] = 0.425 \pm 0.029 \pm 0.070$
 - $-R_{AA}[\Upsilon(2S)] = 0.116 \pm 0.028 \pm 0.022$
 - $R_{AA}[\Upsilon(3S)] < 0.14$ at 95% CL
- Anisotropic hydrodynamic model for thermal suppression of bottomonia
 - 2 temperatures along y, 3 shear viscosities, no CNM, no regeneration, ...
- Transport model taking into account CNM and regeneration.

Bottomonia in PbPb

CMS PAS-15-001

- Υ suppression does not strongly depend on kinematics.
- Anisotropic hydro model cannot reproduce the forward data.

Run II Results Coming Soon !!!

Summary

- Charmonia and Bottomonia in PbPb are suppressed sequentially along their binding energies with respect to pp collisions.
 - $R_{AA}s : \Upsilon(1S) > J/\psi^* > \Upsilon(2S), \psi(2S)^* > \Upsilon(3S)$ (* high p_T)
- New results are coming soon (Maybe HP 2016) !!!

THANK YOU!!!

Quark-Gluon-Plasma (QGP)

QCD phase diagram

What is Quark-Gluon-Plasma ?

- A phase of Quantum Chromodynamics (QCD)
- Consist of asymptotically free quarks and gluons
- Exist at extremely high temperature and density
- Live in only a few milliseconds after Big Bang

T_c (Critical temperature) : 150~200 MeV(Lattice QCD)• Exploring QGP means exploring our early of universe

Quarkonia Acceptance

- ALICE: acceptance for $p_T > 0$
 - midrapidity: no absorber and low magnetic field
 - forward rapidity: longitudinal boost
- ATLAS and CMS: Muons need to overcome strong magnetic field and energy loss in the absorber
 - minimum total momentum p~3–5 GeV/c to reach the muon stations
 - Limits J/ψ acceptance:
 - mid-rapidity: $p_T > 6.5 \text{ GeV/c}$
 - forward rapidity: $p_{\rm T} > 3~GeV/c$
 - (values for CMS, but similar for ATLAS)
 - Y acceptance:
 - $p_T > 0$ GeV/c for all rapidity
- Complementary acceptances

Quarkonia Measurement in pp, pPb and PbPb

- Quarkonia (heavy flavor (charm, bottom) quark-antiquark bound states)
 - Large momentum transfer required to produce by hard gluon-gluon fusion at early stage of collisions : good probe of initial and final state of evolution of extremely hot and dense matter created in high energy heavy-ion collisions
- **Bottomonia** (bb bound state : Υ (1S, 2S, 3S), X_b ...) have been actively used as new possible probes since 2010 LHC era.

NPE v_2 at RHIC and prediction of J/ ψ v_2 at LHC

NPE has significant elliptic flow (v_2) . It should be inherited to quarkonia, which indicates the existence non-zero v_2 of quarkonia

Significant elliptic flow (v₂) may b e expected at LHC energy due to the significant contribution of regenerated J/ψ

J/ψ Azimuthal Anisotropy at RHIC and LHC

Phys. Rev. Lett. 111, 102301 (2013)

STAR measured compatible zero v_2 from 2 GeV/c in whole p_T region.

CMS challenge:

- 1) Prompt and non-prompt J/ ψ separation
- 2) Extend high p_T region

ALICE observed non-zero v_2 in 2 - 4 GeV/c region. Data covers both of b-contribution models.

Prompt & Non-prompt J/ψ Separation

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length (I_{J/ψ})

$$\ell_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T} \quad \underset{\mathsf{L}_{xy}}{\overset{\mathsf{J}/\psi}{\overset{\mathsf{J}/\psi}{\overset{\mathsf{J}}}} = \underbrace{\mathsf{J}}_{\overset{\mathsf{J}}{\overset{\mathsf{J}}}} \overset{\mathsf{\mu}^+}{\overset{\mathsf{J}}{\overset{\mathsf{J}}}}$$

CMS-PAS-HIN-12-014

Prompt & Non-prompt J/ψ Separation

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length (I_{J/ψ})

$$=L_{xy}\frac{m_{J/\psi}}{p_T}\quad \underset{\mathsf{L}_{xy}}{\mathsf{B}} \underbrace{J/\psi}_{\mathsf{L}_{xy}} \underbrace{J/\psi}_{\mathsf{L}_{xy}}$$

CMS-PAS-HIN-12-014

 $\ell_{J/\psi}$

J/ψ Azimuthal Anisotropy in CMS

- Event plane method
- Integrated v₂ for Prompt J/ψ (p_T > 6.5 GeV/c)

 0.054 ± 0.013 (stat.) ± 0.006 (syst.) in |y| < 2.4, 10-60 %
 in significant (3.8σ) v₂ at high-p_T prompt J/ψ

J/ψ Azimuthal Anisotropy in CMS

• Systematic uncertainties

	Systematic uncertainties (%)
Yield extraction	1 - 20
Efficiency corrections	0 - 42
Event plane determination	3.5
Total	12 - 46

J/ψ Azimuthal Anisotropy in CMS

- No strong dependences of centrality, p_T, rapidity
- Low p_T (3-6.5 GeV/c) measured in forward (1.6<|y|<2.4)

$R_{AA} p_T$ dependence

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{MB}} \frac{N_{PbPb}}{N_{pp}} \frac{\varepsilon_{pp}}{\varepsilon_{PbPb}}$$

CMS PAS 15-001

- No strong dependence for p_T in the measured region.
- $\Upsilon(1S)$ is described well but some tension with $\Upsilon(2S)$.

R_{AA} vs binding energy

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ″
mass $[GeV]$	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E \; [\text{GeV}]$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
$\Delta M \; [\text{GeV}]$	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
r_0 [fm]	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

Table 3: Quarkonium Spectroscol https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN12014

Results from PbPb Collisions

Y(2S) and Y(3S) are more suppressed than Y(1S)

$$\begin{split} R_{AA}(\Upsilon(1S)) &= 0.56 \pm 0.08(\text{stat}) \pm 0.07(\text{syst}), \\ R_{AA}(\Upsilon(2S)) &= 0.12 \pm 0.04(\text{stat}) \pm 0.02(\text{syst}), \\ R_{AA}(\Upsilon(3S)) &= 0.03 \pm 0.04(\text{stat}) \pm 0.01(\text{syst}) \\ &< 0.10(95\%\text{CL}). \end{split}$$

Y(3S) are more suppressed than Y(2S).

Ordering: $R_{AA}(Y(3S)) < R_{AA}(Y(2S)) < R_{AA}(Y(1S))$

The life of Quarkonia in the Medium can be Complicated

- Observed J/ψ is a mixture of direct production+feeddown (R. Vogt: Phys. Rep. 310, 19 7 (1999)).
 - All J/ $\psi \sim 0.6$ J/ ψ (Direct) + ~0.3 χ_c + ~0.1 ψ '
 - B meson feed down.
 - Important to disentangle different component
- <u>Suppression and enhancement in the "cold" nuclear medium</u>
 - Nuclear Absorption, Gluon shadowing, initial state energy loss, Cronin effe ct and gluon saturation (CGC)
 - Study p+A collisions
- <u>Hot/dense medium effect</u>
 - J/ ψ , Y dissociation, i.e. suppression
 - Recombination, i.e. enhancement
 - Study different species, e.g. J/psi, Υ
 - Study at different energy, i.e. RHIC, LHC

Lamia, B. "Observation of Z Boson Production in Heavy Ion Collisions at CMS" 6th International Work Moriond QCD and High Energy Interactions, 2011

p on

Single Muon Acceptance

$$\begin{split} |\eta^{\mu}| < 1.0 \rightarrow p_{T}^{\mu} > 3.4 \text{ GeV}/c \\ 1.0 \leq |\eta^{\mu}| < 1.6 \rightarrow p_{T}^{\mu} > 5.8 - 2.4 \times |\eta^{\mu}| \text{ GeV}/c \\ 1.6 \leq |\eta^{\mu}| < 2.4 \rightarrow p_{T}^{\mu} > 3.3667 - 7/9 \times |\eta^{\mu}| \text{ GeV}/c \end{split}$$

CNU Colloquium, 25 September 2014, Dong Hog Moon

Reconstruction Efficiency

Binding Energy of Quarkonia

state	J/ψ	χ_c	ψ'	Υ	χ_b	Ϋ́	χ_b'	Υ″
mass [GeV]	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
ΔE [GeV]	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
ΔM [GeV]	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
radius [fm]	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

pp DiMuon

42

Prompt $\psi(2S)$ in mid-rapidity (high p_T)

PRL 113 (2014) 262301

In high p_T (mid-rapidity): ψ(2S) in PbPb is smaller than in pp with respect to the J/ψ as seen with 2010 pp data.

Prompt $\psi(2S)$ in forward rapidity (low p_T)

PRL 113 (2014) 262301

 In low p_T (forward-rapidity): ψ(2S) in PbPb is higher(or less) ?? than in p p with respect to J/ψ, yet.

Quarkonia Measurements

Quarkonia : plural of quarkonium (c, b)

Charmonia : bound state of charm and anti-charm (J/ ψ , ψ' (2S), χ_c (1P) etc..) Bottomonia : bound state of bottom and anti-bottom (Y(1S, 2S, 3S), χ_b (1P) etc..)

Quarkonia Measurements

Quarkonia : plural of quarkonium (c, b)

Charmonia : bound state of charm and anti-charm (J/ ψ , ψ' (2S), χ_c (1P) etc..) Bottomonia : bound state of bottom and anti-bottom ($\Upsilon(1S, 2S, 3S), \chi_b(1P)$ etc..)

 $0 < T < T_c$

Illustration: A.Rothkopf

			'	1
quark		Quarkoi	nium	
	1) anti-quark

state	J/ψ	χ _c	ψ′(2S)
Mass(GeV)	3.10	3.53	3.69
ΔE (GeV)	0.64	0.20	0.05
T _d /T _c	2.1	1.16	1.12
state	Y (1S)	Y(2S)	Y(3S)
Mass(GeV)	9.46	10.0	10.36
ΔE (GeV)	1.10	0.54	0.20
T _d /T _c	> 4.0	1.60	1.17

A. Mocsy, EPJC61 (2009) 705

Quarkonia Measurements

Quarkonia : plural of quarkonium (c, b)

Charmonia : bound state of charm and anti-charm (J/ ψ , ψ' (2S), χ_c (1P) etc..) Bottomonia : bound state of bottom and anti-bottom (Y(1S, 2S, 3S), χ_b (1P) etc..)

Quarkonia Measurement in pp, pPb and PbPb

Quarkonia : plural of quarkonium (c, b)

Charmonia : bound state of charm and anti-charm (J/ ψ , ψ '(2S), χ_c (1P) etc..) Bottomonia : bound state of bottom and anti-bottom (Υ (1S, 2S, 3S), χ_b (1P) etc..)

Quarkonia Measurement in pp, pPb and PbPb

Quarkonia : plural of quarkonium (c, b)

Charmonia : bound state of charm and anti-charm (J/ ψ , ψ '(2S), χ_c (1P) etc..) Bottomonia : bound state of bottom and anti-bottom (Υ (1S, 2S, 3S), χ_b (1P) etc..)

pp collisions

- Cross section, understanding polarization

PbPb collisions

- Exploring new nuclear matter known as Quark-Gluon-Plasma (QGP)
- Characterize and quantify the properties of QGP
- Observed strong quarkonia suppression

Pb collisions

- Create Cold Nuclear Matter (CNM)
- Understanding initial state effect on production
- Examine pure suppression from observation in **INPC 2016** @ Adelaide

Quarkonia Measurement in pPb Collisions

- Cold Nuclear Matter
 - Quarkonia productions are sensitive to gluon PDF
 - Initial state effects : nPDF (Nuclear Shadowing), Comover break-up, energy loss due to multiple scattering ... etc

$$R_{FB} (p_T, y) = \frac{\text{Yield in } (p_T, +y)}{\text{Yield in } (p_T, -y)}$$

- Clear dependence of p_T : more suppression for forward in lower p_T
- No strong dependence on |y|

INPC 2016 @ Adelaide

52

- Clear dependence of event activity : more suppression for forward in larger event activity
- No strong dependence on |y|

INPC 2016 @ Adelaide

53

Bottomonia in pPb

PRL 109 (2012) 222301

- Indication of initial suppression in pPb •
- Y(nS)/Y(1S) has clear dependence on N_{trks} for pp & pPb ٠

Bottomonia in pPb

PRL 109 (2012) 222301

- Indication of initial suppression in pPb •
- Y(nS)/Y(1S) has clear dependence on N_{trks} for pp & pPb & PbPb •

