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Introduction

• Transport properties of hot/dense matter are important for heavy ion collision (HIC), cosmology and
important for near equillibrium evolution of any thermodynamic system

• The most studied transport coefficient is perhaps shear viscosity η. In HIC spatial anisotrpy of colliding
nuclei gets converted to momentum anisotropy throgh a hydro evoln. The equllibriation is decided by

η. (
η

s
∼

1

4π
, the KSS bound)

• The bulk viscosity ζ - thought earlier to be not important for HIC hydro evolution. Argument:

ζ ∼ (ε− 3p)/T 4 that vanishes for ideal gas. However, lattice simulation⇒ large (ε− 3p)/T 4 near
Tc . This,in turn, can give rise to different physical effects (Cavitation).

• The temperature and chemical potential dependence of transport coefficients may reveal the location
of phase transition

• Most calculations are performed at zero baryon density ρB . Including finite density effects are relevent
for upcoming HIC experiments, BES(Brookhaven), CBM at (GSI, Darmstadt), (NICA at Dubna).



QCD phase diagram and HIC



Boltzmann Equation

Boltzmann equation describes the evolution of particle distribution
function

dfa

dt
=
∂f a

∂t
+

pi

Ea

∂fa

∂x i
−
∂Ea

∂x i

∂fa

∂pi
= Ca

The equllibrium distribution function

f 0
a =

1

exp β(uαpα ∓ µ) + 1

To estimate viscosity coefficients, consider small departure from
equllibrium

dfa

dt
=

pµ

Ea

∂f 0
a

∂xµ
−

M

Ea

∂M

∂x i

∂f 0
a

∂pi
= −

δfa

τa

∂µf
a

0 = −f a0 (1∓ f a0 )∂µ
(
β(Ea − µ− p · u

)
Boltzmann Eq. relates non equllibrium part of distribution

function to variation in fluid velocity and temperature and
chemical potential



T µν, Jµ and transport coefficients

Distribution function is related to the energy momentum tensor

Tµν =
∑
a

∫
dΓap

µpν fa + gµνU(σ); dΓa = νa
dp

(2π)3

Jµ =
∑
a

ta

∫
dΓa

pµ

Ea
fa

Change in nonequllibrium part ⇒

δT ij =
∑
a

∫
dΓa

pi pj

TEa
τafa(1− fa)qa(p, β, µ)

δJ i =
∑
a

ta

∫
dΓa

pi

Ea
τafa(1− fa)

(
ta −

nEa

ε + p

)
pj∂j

(
µ

T

)



ζ, η,λ contd.· · ·

The non equllibrium contribution related to the velocity gradients
can be reorganised as

qa = Qa
∂i ui −

pi pj

2Ea
Wij

;

Wij = ∂i uj + ∂jui −
2

3
δij∂kuk

Shear and bulk viscosities are defined through the dissipative part

∆T ij = −ζδij∂kuk − ηWij

Thermal conductivity is defined through the dissipative part of the
current

∆Ji = λ

(
nT

w

)2

∂i

(
µ

T

)



ζ, η,λ contd.· · ·

η =
1

15T

∑
a

∫
dΓa

p4

Ea

(
τaf

0
a (1− f 0

a ) + τ̄a f̄
0
a (1− f̄ 0

a )
)

ζ = −
1

3T

∑
a

∫
dΓa

p2
a

Ea

(
τaf

0
a (1− f 0

a )Qa + τ̄a f̄
0
a (1− f̄ 0

a )Q̄a

)

λ =
1

3

(
w

nT

)2 ∑
a

ta

∫
dΓa

p2

E2
a

fa(1− fa)τa

(
ta −

nEa

w

)

In the bulk viscosity coefficient, the coefficient Qa depends upon
the equation of state

Qa = −
[

p2
a

3Ea
+

(
∂P

∂n

)
ε

(
∂E

∂µ
− 1

)
−
(
∂P

∂ε

)
n

(
Ea − T

∂Ea

∂T
− µ

∂Ea

∂µ

)
.

]



ζ contd.

However, Qa has to be supplemented by the conditions uµδJ
µ = 0

and uµδT
µνuν = 0 corresponding to baryon number and energy

momentum conservation. Within the relaxation time
approximation, these Landau-Lifshitz conditions reduce to

∑
a

ta〈τaQa〉 = 0,
∑
a

〈τaEaQa〉 = 0

〈φa(p)〉 =

∫
dΓa[φa(p)f 0

a (1− f 0
a )]

If Landau Lifshitz conditions are not satisfied, replace

τaQa → τaQa + αta + βEa

The unknown coefficients to be determined from the baryon
number and energy momentum conservation equation. The
expression for bulk viscosity consistent with the Landau Lifshitz
condition is then given as

ζ = −
1

T

∑
a

〈(τaQa + αta + βEa)
p2

3Ea
〉



η,ζ,λ contd.

The expressions for the transport coefficients become simpler when
one realises that for ideal hydrodynamics the entropy per baryon
(σ) is constant.

η =
1

15

∑
a

∫
dΓa

p4

E2
a

τaf
0
a (1− f 0

a )

ζ =
1

9T

∑
a

∫
dΓa

τaf
0
a (1− f 0

a

E2
a

[
p2 + 3v2

nT
2Ea

∂

∂T

(
Ea − µa

T

)
σ

]2

λ =
1

3

(
w

nT

)2 ∑
a

∫
dΓa

p2

E2
a

τafa(1− fa)

(
ta −

nEa

w

)2

Transport coefficients are nonnegative as they must be.

It is important to include the Landa-Liftshitz conditions to
obtain the above results.

Knowing the equation of state and other thermodynamic quantities
like velocity of sound etc. and the relaxation time one can estimate
the viscosity coefficient.
This thermodynamics and estimation of relaxation time is done
within the Nambu Jonalasinio model.



Nambu JonaLasinio model : Thermodynamics

L = ψ̄(iγµ∂
µ − m0)ψ − G

(
(ψ̄ψ)2 + (ψ̄iγ5taψ)2

)
The thermodynamic potential (negative of pressure):

Ω(β, µ) = −
γ

(2π)3

∫
E(k)dk−

γ

(2π)3β

∫
dk (ln(1 + exp(−β(E − µ)) + µ→ −µ) +

(M − m0)2

4G

γ = 2NcNf (degeneracy); E (k) =
√

k2 + M2,M : Constituent
quark mass get determined self consistently solving the mass gap
equation

M = m0 − 2G〈ψ̄ψ〉ρs = m0 +
γ

(2π)3

∫
M

E(k)

(
1− f−(k, β, µ)− f+(k, β, µ)

)
dk



masses ; NJL model contd.· · ·

Within RPA Meson propagators:

D =
2iG

1− 2GΠσ/π

Mass of the meson determined by pole position of the Real part of
meson propagator:

1− 2GReΠM (mM , 0) = 0,

For mM < 2M, ΠM is real while for mM > 2M, ΠM has imaginary
part: Decay width of resonance ΓM = ImΠM(mM , 0)
This affects the quark scatterings through meson exchange and
hence on the relaxation time.



Masses · · ·

0

100

200

300

400

500

600

700

800
M

,
M

,M
(M

eV
)

100 150 200 250 300

T (MeV)

M

M

M

π
σ

π

σ

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

100 150 200 250 300

T (MeV)

dM dT

µ = 0MeV
µ = 100MeV

Fig. 1-a Fig. 1-b

Figure: Temperature dependence of the masses of constituent quark (M), and pions (Mπ) and sigma mesons

(Mσ) for µ = 0 (Fig1-a) and temperature derivative of the constituent quark mass for µ = 0MeV and

µ = 100MeV (Fig. 1-b).

Tχ = 188MeV; mπ(TMott) = 2M(TMott); TMott ' 197MeV.



Estimating the average relaxation time

Avg. relaxation time
τ
−1
a =

∑
b

nbW̄ab

Thermally averaged transition rate

W̄a,b =
1

nanb

∫
fafbWabdπadπb

Wab(s) =
2
√

s(s − 4m2)

1 + δab

∫ 0

tmin

dt(
dσ

dt
)(1− fc (

√
s

2
, µ))(1− fd (

√
s

2
, µ))

dσ

dt
=

1

16πs

1

pab
|M|2



Estimating the average relaxation time

For two flavors we consider the following possible scatterings.

uū → uū, ud̄ → ud̄, uū → dd̄,

uu → uu, ud → ud, ūū → ūū,

ūd̄ → ūd̄, dd̄ → dd̄, dd̄ → uū,

dū → dū, dd → dd, d̄ d̄ → d̄ d̄,

Using i-spin symmetry, charge conjugation symmetry as well
as the crossing symmetry to relate the matrix element square
for the above 12 processes reduce to evaluating only two
independent matrix elements uū → uū and ud̄ → ud̄

Dominant contribution comes from propagation of pion and
sigma mode in the s-channel.

The temperature dependence of π and σ modes play an
important role in these cross section evaluation.

Zhuang etal Phys Rev D51,3728, 1995



Relaxation time; η/s: T behavior
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Figure: Relaxation time as a function of temperature for µ = 0 MeV and for µ = 100MeV (Fig 5-a). In Fig
(5-b), shear viscosity to entropy density ratio is shown for µ = 0 MeV and µ = 100 MeV.



η/s: Contd.
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Figure: Shear viscosity to entropy ratio for µ = 0 for low temperatures (Fig 3-a). The present calculations is
shown by the solid lines. The other results correspond to Lang etal (2012) of interacting pion gas, Fernandez-Fraile
and Nicola (2009). The two curves by Kapusta etal (2011) correspond to different masses for the sigma mesons.
The green dashed curve is for mσ = 600 MeV while the orange dotted curve is with mσ = 0.9 GeV. The pink dot
dashed curve is for the SHMC model by Khvorostukhin etal(2010). In Fig. 3-b is shown the ratio for higher
temperatures. Present calculations is shown by solid red line, the two curves of Marty etal(2013)‘ , correspond to
dynamical quasi particle model (DQPM) and the 3 flavor NJL model, the orange dotted curve by Plumari
etal(2012) , the pink dashed curve by Sasaki etal(2010) is for two flavor NJL model while the brown dot dashed
curve is from Lang etal (2014).



Bulk viscosity: T behavior
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Figure: Bulk viscosity to entropy ratio as a function of temperature in units of Tc for zero baryon density (4-a).
Also shown results from different models, the SHMC model of Khvosthukin etal (2010), Kapustaand Chakraborty

(2009), the three flavor NJL results of Marty etal. Bulk viscosity in units of GeV3 as a function of temperature is
shown in Fig. 4-b. Solid red curve corresponds to the present calculations while dotted curve correspond to the
results by Sasaki and Redlich (2010)

.



Bulk viscosity: T behavior

For zero chemical potential

ζ =
1

9T

∑
a

dΓa
τa

E2
a

[
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dT
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]2
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Figure: The violation of conformality measure C1 = 1− 3v2
n (Fig 5a) and C2 = M2 − TM

dM

dT
(Fig 5b) as a

function of temperature for µ = 0 MeV and for µ = 100 MeV

v2
n =

(
∂P

∂ε

)
n

=
sχµµ − nχµT

T (χTTχµµ − χ2
µT

)



λ(T )
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1

3

( w
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)2∑
a

∫
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E 2
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w
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Figure: Thermal conductivity(λ) in units of T 2 for µ = 100 MeV.



Summary,conclusions and outlook

We tried to derive the viscosity coefficients using Boltzmann kinetic equation withing relaxation time
approximation within NJL model.

While η depends only on the behaviour of relaxation time and the medium dependent masses, ζ depends
on other thermodynamic quantities and the equation of state.

The deviation from equllibrium should be consistent the Landau Lifshitz conditions.

The thermodynamics of hot and dense matter is estimated within NJL model.

The transport coefficients are non negative in the relaxation time approximation which is a consequence of
Landau-Liftshitz conditions of fit.

Relaxation times are estimated using quark scatterring through meson exchange.

Medium dependence of meson masses and widths affect the relaxation time and hence the transport
coefficients.




