

NUCLEAR STRUCTURE STUDIES WITH THE PENNING TRAP MASS SPECTROMETER MLLTRAP AT ALTO

Enrique Minaya Ramirez

Institut de Physique Nucléaire d'Orsay

Outline

- I. Penning traps mass spectrometers
- II. MLLTRAP project
- III. Status of MLLTRAP@ALTO

Outline

I. Penning traps mass spectrometers

II. MLLTRAP project

III. Status of MLLTRAP@ALTO

Penning traps around the world

→ High quality low-energy beams : low emittance, low energy spread, purified samples

High-precision mass measurements with Penning traps

High-precision mass measurements with Penning traps

Field	δm/m
Chemistry: identification of molecules	10 ⁻⁵ - 10 ⁻⁶
Nuclear physics: shells, sub-shells, pairing	1 0 ⁻⁶
Nuclear fine structure: deformation, halos	10 ⁻⁷ - 10 ⁻⁸
Astrophysics : r-process, rp-process, waiting points	10 ⁻⁷
Nuclear models and formulas: IMME	10 ⁻⁷ - 10 ⁻⁸
Weak interaction studies: CVC hypothesis, CKM unitary	10 ⁻⁸
Atomic physics: binding energies, QED	10 ⁻⁹ - 10 ⁻¹¹
Metrology: fundamental constants, CPT	≤10 ⁻¹⁰

Masses and nuclear structure

$M(N,Z) = Z M_p + N M_n - B(N,Z)$

- absolute nuclear binding energy
- shell structure evolution
- Benchmark nuclear models

Outline

I. Penning traps mass spectrometers

II. MLLTRAP project

III. Status of MLLTRAP@ALTO

MLLTRAP project in Germany

Peter G. Thirolf, Christine Weber

2009 → Off-line commissioning of the double Penning trap system MLLTRAP

V.S. Kolhinen, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 600 (2009) 391

 \rightarrow MLLTRAP will benefit from low energy beams from two facilities.

The DESIR facility at GANIL-SPIRAL2 : - β de

- β decay spectroscopy
 - Laser Spectroscopy
 - High-precision mass measurements

DESIR (Désintégration, Excitation et Stockage d'Ions Radioactifs

Day 1 SPIRAL2 Phase 2 (RIB in DESIR & GANIL Experimental Area)

J. Lunney (spokesperson), P. Infront (contactperson)	ndicate the nan	ne of the conta	ct person):
Day 1 SPIRAL? Phase ?			
(RIB in DESIR & GANIL Experimental Area))		
Title: Study of quantum phase transitions around $A = 100$ from	the nuclear mass	surface	
Spokespersons (if several, please use capital letters to i	indicate the nan	ne of the conta	ct person):
D. Lunney, CSNSM-Orsay (spokesperson), P. Thirolf, LN	MU-Munich (cor	tactperson)	
Day 1 SPIRAL2 Phase 2			
RIB in DESIR & GANIL Experimental Area)			S
RIB in DESIR & GANIL Experimental Area) <i>Tersion 10/12/2010</i>	104 from § ³ wi	4. MT I TD AD	
RIB in DESIR & GANIL Experimental Area) ⁷ ersion 10/12/2010 Title: Precision mass measurements of nuclei with Z ~	104 from S ³ wi	th MLLTRAF	at DESIR
RIB in DESIR & GANIL Experimental Area) <u>Version 10/12/2010</u> Title: Precision mass measurements of nuclei with Z ~ pokespersons (if several, please use capital letters to i b.G. Thirolf	104 from S ³ wi ndicate the nam	th MLLTRAF	at DESIR
RIB in DESIR & GANIL Experimental Area) Version 10/12/2010 Title: Precision mass measurements of nuclei with Z ~ Pokespersons (if several, please use capital letters to in P.G. Thirolf Iddress of the contact person: Faculty of Physics, LMU M Farching/Germany	104 from S ³ wi ndicate the nam funich, Am Cou	th MLLTRAF	at DESIR ct person): 748

N=Z nuclides up to ¹⁰⁰Sn

N=60, A = 100

The ALTO facility

ALTO

ALTO

Stable and Radioactive beam facility
R&D on ISOL & RIB

Iow-energy physics program based on photo-fission

R&D and physics at ALTO a step towards a next-generation ISOL RIB facility

Resonance ionization laser ion source
on-line isotope separator PARRNe

30-kV platform
mass separator (A/ΔA = 1500)
10 µA, 50 MeV e- beam
10¹¹ – 4 x10¹¹ fissions/s

	<u>2013</u>	2014	<u>2015</u>
Users	200	135	143
Beam-time	2983 h	2297 h	2736 h
	373 UT	287 UT	342 UT

Shape coexistence in the ⁷⁸Ni region : A. Gottardo et al., Phys. Rev. Lett. 116, 182501 (2016)

24/03/2016 → Project funded from the French Investments program LabEx (laboratory of Excellence) P2IO

Outline

I. Penning traps mass spectrometers

II. MLLTRAP project

III. Status of MLLTRAP@ALTO

Move of MLLTRAP from MLL to Alto

February – April 2016

July 2016

The truck left MLL the **14**th of July 2016

MLLTRAP is now at ALTO

Adelaide, 15th of September 2016

High-precision mass measurements at ALTO

Installation of MLLTRAP @ ALTO

COLETTE : RFQ cooler and buncher

 $2r_0 = 14 \text{ mm}$ L = 40 mm (9 segments - center) L = 20 mm (6 segments - first and last)

MLLTRAP for high precision mass measurements

First trap (purification trap)

Mass resolving power of m/Δm ≈ 100 000 ⇒ separation of isobars

Second trap (measurement trap)

Quadrupolar resonance $m/\Delta m \approx 1\ 000\ 000$ \Rightarrow separation of isomers

Octupolar resonance $m/\Delta m \approx 20\ 000\ 000$

S. Eliseev et al., Phys. Rev. Lett. 107 (2011) 152501

E. Minaya et al., Nucl. Instr. Meth. B 317 (2013) 501

MLLTRAP for high precision mass measurements

First trap (purification trap)

Mass resolving power of m/Δm ≈ 100 000 ⇒ separation of isobars

Second trap (measurement trap)

Quadrupolar resonance $m/\Delta m \approx 1\ 000\ 000$ \Rightarrow separation of isomers

Octupolar resonance $m/\Delta m \approx 20\ 000\ 000$

S. Eliseev et al., Phys. Rev. Lett. 107 (2011) 152501 E. Minaya et al., Nucl. Instr. Meth. B 317 (2013) 501

→Phase Imaging Ion Cyclotron Resonance (PI-ICR)

Delay-Line Detector by Roentdek GmbH

compared to standard technique:

- \rightarrow 40 fold gain in resolving power
- \rightarrow 5 fold gain in precision
- \rightarrow 25 faster than the Ramsey TOF-ICR

S. Eliseev et al., APB 114 (2014)

MLLTRAP for in-trap nuclear decay-spectroscopy experiments

In-trap Decay Spectroscopy developed @ MLL

C. Weber et al., Int. J. Mass Spectrom. 349-350, 270 (2013) C. Weber et al., Nucl. Instr. Meth. B 317, 532 (2013)

MAGNETIC FIELD STRENGTH ALONG THE TRAP AXIS

MLLTRAP for in-trap nuclear decay-spectroscopy experiments

In-trap Decay Spectroscopy developed @ MLL

C. Weber et al., Int. J. Mass Spectrom. 349-350, 270 (2013) C. Weber et al., Nucl. Instr. Meth. B 317, 532 (2013)

- 'detector trap': α -detectors act as trap electrodes
- customized α detectors were developed and characterized for the cryogenic and UHV-conditions (single-sided Si-strip detector, active area 30x30 mm², 30 strips, α-energy resolution ~ 20 keV)

MLLTRAP for in-trap nuclear decay-spectroscopy experiments

In-trap Decay Spectroscopy developed @ MLL

C. Weber et al., Int. J. Mass Spectrom. 349-350, 270 (2013) C. Weber et al., Nucl. Instr. Meth. B 317, 532 (2013)

Advantages:

- Decay experiments with carrier-free particles stored in a Penning trap enable studies on ideal ion samples.
- The improved energy resolution can be exploited for high-resolution a- and electron-decay spectroscopy.

Physics Goals:

- From lifetime measurements of the first excited 2⁺ states in heavy nuclei, nuclear quadrupole moments Q₀ can be derived.
- Similar experiments on 0⁺ states allow for a determination of E0 decay strengths r² (E0).
- Shape coexistence of 0⁺ configurations as present in mid-shell regions around magic proton numbers

High-precision mass measurements at ALTO

- High-precision mass measurements in the region of the magic numbers 50 and 82 are of high interest for nuclear astrophysics (r and rp process)
- Masses of neutron-rich Ag and In isotopes would allow to investigate a possible weakening of the shell gap for Z < 50 and its impact on the A = 130 r-process abundances

Thank you for your attention!

Serge Franchoo, Marion MacCormick, Enrique Minaya Ramirez, Karl Hauschild, Joa Ljungvall, Araceli Lopez-Martens, David Lunney Bertram Blank, Jean-Charles Thomas, Peter G. Thirolf, Christine Weber

