NUCLEAR STRUCTURE STUDIES WITH THE PENNING TRAP MASS SPECTROMETER MLLTRAP AT ALTO

Enrique Minaya Ramirez
Institut de Physique Nucléaire d’Orsay
Outline

I. Penning traps mass spectrometers

II. MLLTRAP project

III. Status of MLLTRAP@ALTO
Outline

I. Penning traps mass spectrometers

II. MLLTRAP project

III. Status of MLLTRAP@ALTO
Penning traps around the world

→ **High quality low-energy beams**: low emittance, low energy spread, purified samples
High-precision mass measurements with Penning traps

Cyclotron frequency

\[f_c = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B \]

strong homogeneous magnetic field

+ weak electrostatic field
High-precision mass measurements with Penning traps

<table>
<thead>
<tr>
<th>Field</th>
<th>$\delta m/m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry: identification of molecules</td>
<td>$10^{-5} - 10^{-6}$</td>
</tr>
<tr>
<td>Nuclear physics: shells, sub-shells, pairing</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Nuclear fine structure: deformation, halos</td>
<td>$10^{-7} - 10^{-8}$</td>
</tr>
<tr>
<td>Astrophysics: r-process, rp-process, waiting points</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>Nuclear models and formulas: IMME</td>
<td>$10^{-7} - 10^{-8}$</td>
</tr>
<tr>
<td>Weak interaction studies: CVC hypothesis, CKM unitary</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>Atomic physics: binding energies, QED</td>
<td>$10^{-9} - 10^{-11}$</td>
</tr>
<tr>
<td>Metrology: fundamental constants, CPT</td>
<td>$\leq 10^{-10}$</td>
</tr>
</tbody>
</table>
Masses and nuclear structure

\[M(N,Z) = Z M_p + N M_n - B(N,Z) \]

\[S_{2n}(N,Z) = B(N,Z) - B(N-2,Z) \]

- absolute nuclear binding energy
- shell structure evolution
- Benchmark nuclear models
Outline

I. Penning traps mass spectrometers

II. MLLTRAP project

III. Status of MLLTRAP@ALTO
MLLTRAP project in Germany

Peter G. Thirolf, Christine Weber

2009 → Off-line commissioning of the double Penning trap system MLLTRAP

MLLTRAP project in France

→ MLLTRAP will benefit from low energy beams from two facilities.
The DESIR facility at GANIL-SPIRAL2:
- β decay spectroscopy
- Laser Spectroscopy
- High-precision mass measurements
MLLTRAP project in France

Day 1 SPIRAL2 Phase 2
(RIB in DESIR & GANIL Experimental Area)

Title:
The mass of 100Sn and the extraordinary binding of $N=Z$ nuclides

Spokespersons (if several, please use capital letters to indicate the name of the contact person):
D. Lunney (spokesperson), P. Thirolf (contactperson)

Day 1 SPIRAL2 Phase 2
(RIB in DESIR & GANIL Experimental Area)

Title:
Study of quantum phase transitions around $A=100$ from the nuclear mass surface

Spokespersons (if several, please use capital letters to indicate the name of the contact person):
D. Lunney, CSNSM-Orsay (spokesperson), P. Thirolf, LMU-Munich (contactperson)

Day 1 SPIRAL2 Phase 2
(RIB in DESIR & GANIL Experimental Area)

Title: Precision mass measurements of nuclei with $Z \sim 104$ from S^2 with MLLTRAP at DESIR

Spokespersons (if several, please use capital letters to indicate the name of the contact person):
P.G. Thirolf

Address of the contact person: Faculty of Physics, LMU Munich, Am Coulombwall 11, 85748 Garching/Germany

Phone: 0049-89-28914064
Fax: 0049-89-28914072
E-mail: Peter.Thirolf@lmu.de

Other Participants or Organisations: H. Savajols (GANIL), C. Weber (LMU), B. Blaok (CENBG), M. Gerbaux (CENBG), J. Giovannazzo (CENBG), S. Grevy (CENBG), D. Lunney (CSNSM), E. Minaya Ramirez (GSI)

N=Z nuclides up to 100Sn

N=60, A = 100

Superheavies

Enrique MINAYA RAMIREZ

Adelaide, 15th of September 2016

INPC 2016
MLLTRAP project in France
The ALTO facility

- Stable and Radioactive beam facility
- R&D on ISOL & RIB
- Low-energy physics program based on photo-fission
- R&D and physics at ALTO a step towards a next-generation ISOL RIB facility
- Resonance ionization laser ion source
- On-line isotope separator PARRNe

Isol : mass separator and low-energy RIB lines

- 30-kV platform
- Mass separator ($A/\Delta A = 1500$)
- 10 μA, 50 MeV e- beam
- $10^{11} - 4 \times 10^{11}$ fissions/s

Users

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td>200</td>
<td>135</td>
<td>143</td>
</tr>
<tr>
<td>Beam-time</td>
<td>2983 h</td>
<td>2297 h</td>
<td>2736 h</td>
</tr>
</tbody>
</table>

373 UT 287 UT 342 UT

Shape coexistence in the 78Ni region:

MLLTRAP project in France

24/03/2016 → Project funded from the French Investments program LabEx (laboratory of Excellence) P2IO
Outline

I. Penning traps mass spectrometers

II. MLLTRAP project

III. Status of MLLTRAP@ALTO
Move of MLLTRAP from MLL to Alto

February – April 2016

The truck left MLL the 14th of July 2016

MLLTRAP is now at ALTO
High-precision mass measurements at ALTO
Installation of MLLTRAP @ ALTO

Continuous Beam from ALTO @ 30 / 60 KeV

COLETTE : RFQ cooler and buncher

2r₀ = 14 mm
L = 40 mm (9 segments - center)
L = 20 mm (6 segments - first and last)

MLLTRAP@ALTO (room 110)
MLLTRAP for high precision mass measurements

First trap (purification trap)

Mass resolving power of $m/\Delta m \approx 100\,000$

\Rightarrow separation of isobars

Second trap (measurement trap)

Quadrupolar resonance $m/\Delta m \approx 1\,000\,000$

\Rightarrow separation of isomers

Octupolar resonance $m/\Delta m \approx 20\,000\,000$

MLLTRAP for high precision mass measurements

First trap (purification trap)

Mass resolving power of $m/\Delta m \approx 100\,000$
\Rightarrow separation of isobars

Second trap (measurement trap)

Quadrupolar resonance $m/\Delta m \approx 1\,000\,000$
\Rightarrow separation of isomers

Octupolar resonance $m/\Delta m \approx 20\,000\,000$

\Rightarrow Phase Imaging Ion Cyclotron Resonance (PI-ICR)

$\phi + 2\pi n = 2\pi \nu t$

$\Delta v = \frac{\Delta \phi}{2\pi} = \frac{\Delta R}{\pi R}$

\rightarrow 40 fold gain in resolving power
\rightarrow 5 fold gain in precision
\rightarrow 25 faster than the Ramsey TOF-ICR

Delay-Line Detector by Roentdek GmbH

compared to standard technique:

S. Eliseev et al., APB 114 (2014)
MLLTRAP for in-trap nuclear decay-spectroscopy experiments

In-trap Decay Spectroscopy developed @ MLL

TRAPPED SHORT-LIVED ISOTOPE
EMITS \(\alpha \) PARTICLE AND ELECTRONS

DETECTOR TRAP OF Si-STRIP SENSORS
DRIFT SECTION
POSITION-SENSITIVE ELECTRON DETECTOR

7 T
~ 7 mT

MAGNETIC FIELD STRENGTH ALONG THE TRAP AXIS
MLLTRAP for in-trap nuclear decay-spectroscopy experiments

In-trap Decay Spectroscopy developed @ MLL

- ‘detector trap’: α-detectors act as trap electrodes
- customized α detectors were developed and characterized for the cryogenic and UHV-conditions (single-sided Si-strip detector, active area 30x30 mm², 30 strips, α-energy resolution ~ 20 keV)

Advantages:
- Decay experiments with carrier-free particles stored in a Penning trap enable studies on ideal ion samples.
- The improved energy resolution can be exploited for high-resolution a- and electron-decay spectroscopy.

Physics Goals:
- From lifetime measurements of the first excited 2^+ states in heavy nuclei, nuclear quadrupole moments Q_0 can be derived.
- Similar experiments on 0^+ states allow for a determination of $E0$ decay strengths $r^2(E0)$.
- Shape coexistence of 0^+ configurations as present in mid-shell regions around magic proton numbers.
High-precision mass measurements in the region of the magic numbers 50 and 82 are of high interest for nuclear astrophysics (r and rp process)

- Masses of neutron-rich Ag and In isotopes would allow to investigate a possible weakening of the shell gap for $Z < 50$ and its impact on the $A = 130$ r-process abundances
Thank you for your attention!

Serge Franchoo, Marion MacCormick, Enrique Minaya Ramirez, Karl Hauschild, Joa Ljungvall, Araceli Lopez-Martens, David Lunney Bertram Blank, Jean-Charles Thomas, Peter G. Thirolf, Christine Weber