

SHARAQ Spectrometer: High-resolution Spectroscopy Using Exotic Beams and Reactions

Shin'ichiro Michimasa

Center for Nuclear Study, Univ. of Tokyo

Collaborators

S. Michimasa¹, S. Ota¹, M. Dozono¹, M. Takaki¹, K. Kisamori¹, H. Miya¹, M. Kobayashi¹, Y. Kiyokawa¹, H. Baba², N. Fukuda², N. Inabe², S. Kawase³, T. Kubo², Y. Kubota², C.S. Lee¹, M. Matsushita¹, H. Sakai², A. Stolz⁴, H. Tokieda¹, T. Uesaka², K. Yako¹, Y. Yanagisawa², R. Yokoyama¹, K. Yoshida², S. Shimoura¹

¹Center for Nuclear Study, the University of Tokyo ²RIKEN Nishina Center ³Kyushu University ⁴NSCL, Michigan State University

Contents

- Status of performed experiments at SHARAQ
 - Introduction of SHARAQ
 - Recent Achievements
 - New probes using exotic reactions: Search for Tetra-neutron state using (⁸He,⁸Be→2α) Search for 0⁻ collectivity in ¹²B using (¹⁶O,¹⁶F*[0⁻]→¹⁵O+p)

• High-resolution analysis of exotic beams:

Mass measurement for n-rich ^{55,56}Ca isotopes

– Summary

Detector Setup in Beamline to SHARAQ

Transport Mode of HRBL

Mode	Dispersion Matching	High-resolution Achromatic	Large-Acceptance Achromatic	
Acceptance				
Δp/p (%)	±0.3	±1.0	±2	
$\Delta heta_{x}$ (mrad)	±10	±10	±20	
$\Delta heta_{ m y}$ (mrad)	±30	±30	±20	
Maximum Dispersion	Target	F6	F5	
Typical Spot size at target (mm)	100×10	20-30×10	20-30×10	
Resolution $\Delta p/p$	1/14700	1/7500	1/3300	

You can select beam transportation for your experiment.

SHARAQ spectrometer

- QODQD configuration
 - good angular resolution and momentum resolution
- Dipole Magnets
 - Minimization of higher-order aberration by pole-edge curving
 - Easier tuning to dispersion matching conditions and data analysis
- Superconducting doublet Q
 - Higher resolution & Larger acceptance

Combine missing mass spectroscopy with invariant mass technique

2 alpha particles: K. Kisamori, S. Shimoura et al.Different particles: M. Dozono et al.

2 alpha detection

PRL 116, 052501 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

Ś

Candidate Resonant Tetraneutron State Populated by the ⁴He(⁸He, ⁸Be) Reaction

K. Kisamori,^{1,2} S. Shimoura,¹ H. Miya,^{1,2} S. Michimasa,¹ S. Ota,¹ M. Assie,³ H. Baba,² T. Baba,⁴ D. Beaumel,^{2,3} M. Dozono,² T. Fujii,^{1,2} N. Fukuda,² S. Go,^{1,2} F. Hammache,³ E. Ideguchi,⁵ N. Inabe,² M. Itoh,⁶ D. Kameda,² S. Kawase,¹ T. Kawabata,⁴ M. Kobayashi,¹ Y. Kondo,^{7,2} T. Kubo,² Y. Kubota,^{1,2} M. Kurata-Nishimura,² C. S. Lee,^{1,2} Y. Maeda,⁸ H. Matsubara,¹² K. Miki,⁵ T. Nishi,^{9,2} S. Noji,¹⁰ S. Sakaguchi,^{11,2} H. Sakai,² Y. Sasamoto,¹ M. Sasano,² H. Sato,² Y. Shimizu,² A. Stolz,¹⁰ H. Suzuki,² M. Takaki,¹ H. Takeda,² S. Takeuchi,² A. Tamii,⁵ L. Tang,¹ H. Tokieda,¹ M. Tsumura,⁴ T. Uesaka,² K. Yako,¹ Y. Yanagisawa,² R. Yokoyama,¹ and K. Yoshida²

$^{16}F \rightarrow ^{15}O+p$ decay determination

- Beam : Primary ¹⁶O
 - 250 MeV/u, 10⁷ pps
 - Dispersion matched beam
- Target : Plastic scinti.
 - 1 mm thickness
- Coincidence measurement of ¹⁶F -> ¹⁵O + p
 - Separated flow mode
 - ¹⁵O : 2 LP-MWDCs @ S2
 - p: 2 MWDCs @ S1

¹²C(¹⁶O,¹⁶F(0⁻))¹²B missing mass spectra

(¹⁶O,¹⁶F(0^{__})) is clean probe for SD(0^{__}) !

Cf. H. Okamura *et al*. PLB 345 (1995) 1.

High-resolution performance

Mass measurement: M. Kobayashi, S. Michimasa et al.

Time resolution of Diamond detector

* Signals travel in a 155-meter fiber in the experiment.

 \Rightarrow Intrinsic resolution : **5 ps(\sigma)** ($a\Delta E = 100 \text{MeV}$

Primary beam: ⁷⁰Zn (345 MeV/u), I = 130 pnA_{C 2016}

Property of Secondary Beam

PID by BigRIPS F3-SHARAQ S2

Primary beam: 70 Zn (345 MeV/u), I = 130 pnA_{C 2016}

Preliminary Mass Spectra

Evaluation of Mass resolution

1. Statistical error

- Mass resolution of 10500 (σ) has been achieved for Ca isotopes
 - ⁵⁵Ca: o(stat) = 90 keV (3000 events)
 - $5^{6}Ca: \sigma(stat) = 200 \text{ keV} (400 \text{ events}).$

2. Systematic error

(evaluated from known masses)

Achieved masses resolution:

σ(mass) ~ 150 keV for 55Ca ~ 234 keV for 56Ca

S_{2n} trend in Ca isotopes

Z = 20 (Ca)

⁵⁵Ca and ⁵⁶Ca masses can be determined with enough mass resolution!!

⁵⁵Ca and ⁵⁶Ca masses can be determined with enough mass resolution!!

Summary

- Recent development of SHARAQ spectrometer
 - SHARAQ developed the missing spectroscopy combined with invariant mass technique.
 - We have obtained the tetra-neutron state for the first time.
 - Also successfully obtained a sensitive probe for 0- collectivity
 - SHARAQ continued to develop high-resolution performance.
 - Diamond detector excellent time resolution $\sigma=12$ ps(performance), 5 ps (intrinsic) for Sc isotopes.
 - For PID of heavy ions, isomer tagging system installed. New isomer states were found in ⁵⁸Sc and ⁶¹Ti.
 - Mass resolution reaches 1/10000 (σ).

 → We can target nuclei far from stability of < 10⁻² cps The ^{55,56}Ca masses can be determined with good resolution.

Basic Performance

Maximum rigidity	6.8 Tm
Dispersion (D)	5.86m
Horizontal magnification (M _x)	0.40
D/M _x	l4.7m
Momentum resolution	1/14700
Vertical magnification (M _y)	0.0
Angular resolution '	< Imrad
Vertical acceptance	±3 deg
Dispersion matching	ρ & θ _x

For spot size of 60mm(H)×10mm(V)	
Horizontal acceptance	+ dog
Solid angle	2.7 mrad

For spot size of I0mm(H)×I0mm(V) (in achromatic focus operation)

Solid angle

4.8 mrad

Requirement of Tracking Detectors

- for dispersion matching
 - Little disturbing of the beam
 - Low Multiple Scattering: ~1 mrad (s)
 - Low Energy Straggling: thickness/L_R < 10⁻³
 - Precise measurement of the beam trajectory
 - High Position Resolution: ~300 μm (FWHM)
 [30 cm*1 mrad ~ 300 mm]
- for using RI Beam
 - Overcoming of Low intensity
 - 100% Detection Efficiency for light particles
- in Beam-line detectors, especially
 - Operate under High Counting Rates
 - Goal : Over 1 MHz

What is SHARAQ

- SHARAQ
 = Spectroscopy with High-resolution Analyzer and RadioActive Quamtum beams
- BigRIPS × High-resolution beamline × SHARAQ spectrometer
 - BigRIPS
 provides High intense RI beam
 - High-Resolution beamline
 - realizes <u>dispersion-matching transport</u> with SHARAQ spectrometer against large momentum spread of RI Beam
 - SHARAQ spectrometer
 - analyzes momentum of reaction products with high resolution

High-Resolution Achromatic

Experiment for confirmation (2016.6.16-25)

Better statistics and Better accuracy of energy than previous experiment (⁴He(⁸He,⁸Be)4n @ 186 MeV/u)

4 events

 \rightarrow 5 times or more

Improve efficiencies (redundancy)

 $E_{4n} = 0.83 \pm 0.65$ (stat.) ± 1.25 (sys.) MeV

 \rightarrow better than 0.3 MeV both for stat. and syst.

Calibration using ¹H(³H,³He)n with same rigidity ³H beam (310 MeV/u) as ⁸He

¹⁶F->¹⁵O+p decay

• Kinematics curves are clearly observed

- Relative energy (E_{rel})
 - $\delta E_{rel} = 100 \text{ keV (FWHM)}$ (a) $E_{rel} = 0.54 \text{ MeV}$ \Rightarrow Clear separation between ${}^{16}F(0^{-},1^{-},2^{-})!$
- Detection efficiency (ε) (Monte Carlo simulation)
 - $\epsilon = 0.189$ @ $E_{rel} = 0.54$ MeV
 - Due to ang. accpt. for proton

Time resolution for heavy ions

- Time difference between both edges of a strip in a diamond detector
- Corrected by hit position in the strip

 Timing resolution of the diamond detector is estimated to be σ = 12 ps

(cf. ⁴He at 32 MeV \rightarrow σ = 27 ps)

Dispersion matching transport

• Previous record for ¹⁴N at 200 AMeV

DM Optics Tuning and Correction in SHARAQ03

 \Rightarrow 1.6 mm (FWHM) corresponds to p/ $\Delta p \sim 7500$ (FWHM;) We can do correction well using F3 (Starting) and S0 (dispersive) information.

Radiation Damage

© pCVD diamonds operate 10-days beam time

```
Setup: 2 diamonds were installed for (F3 and F7)
Beam: <sup>132</sup>Sn beam
at F3 : 193 MeV/u, 850kHz (ΔE=464MeV)
at F7 : 130 MeV/u, 300kHz (ΔE=581MeV)
Beam Time : 10 days
```

As Online Radiation Damage Monitor, we measured leak current \Rightarrow Stable (not increased) during MT. We have not observe serious problems of detector signals

Details of radiation damage (in time resolution etc) are under analysis...

Radiation Damage

© pCVD diamonds operate 10-days beamtime

* Initial values of leak current may be determined by the property of each crystal

Total yield of 55Ca: several thousands

any species of reference nuclei over a broad nge of A and Z were observed.

- These nuclei are used in the mass calibration.

uclei whose masses have not been measured:

Z	Nuclei (Yield > 1000)
17	47Cl, 48Cl
18	50Ar
19	
20	55Ca
21	58Sc, 59Sc
22	58Ti, 59Ti, 60Ti
23	62V, 63V

Masses of these nuclei will be determined with the precision of several hundreds keV

Mass spectra

- Mass resolution of 10000 (σ) has been achieved for Z = 20 nuclei
 - 55Ca: $\sigma(stat) = 90 \text{ keV}$
 - 56Ca: σ(stat) = 200 keV
- Masses of 55Ca and 56Ca are determined with precisions of a few hundreds keV