Lattice QCD and transport coefficients

Harvey Meyer

International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016

Cluster of Excellence

DFG Deutsche Forschungsgemeinschaft

Institute for Nuclear Physics Helmholtz Institute Mainz

Plan

Strongly interacting matter at temperatures $T=100-500\,{\rm MeV}$

- \blacktriangleright probed in heavy-ion collisions: hadrons \rightarrow quark-gluon plasma
- state of matter for the first microsecond after Big Bang

Thermal physics: $\beta = 1/(kT)$,

$$\langle A \rangle = \frac{1}{Z} \operatorname{Tr} \{ e^{-\beta H} A \}, \qquad Z = \operatorname{Tr} \{ e^{-\beta H} \}$$

Overview of equilibrium properties from lattice QCD

Near-equilibrium (real-time) properties

- formalism
- vector channel for light quarks: dilepton rate, diffusion coefficient
- heavy-quark momentum diffusion coefficient
- pion quasiparticle in the hadronic phase

- ▶ at $\mu_B = 0$: $T_{\text{transition}} = 155 \pm 8 \text{ MeV}$ from lattice simulations (crossover)
- e.g. from chiral susceptibility $\int d^4x \langle \bar{\psi}(x)\psi(x) \ \bar{\psi}(0)\psi(0) \rangle$ [see e.g. review Soltz et al. 1502.02296].

Fig. from Braun-Munzinger, Koch, Schäfer, Stachel, Phys.Rept. 621 (2016) 76

Thermodynamic potentials

Fig. from review by Soltz et al. 1502.02296

- \blacktriangleright at $T=260 {\rm MeV}, \ p\approx 1/2 p_{\rm SB}$: far from weakly interacting quarks and gluons;
- ▶ hadron resonance gas (HRG) model works well up to T = 160 MeV;
- ▶ HRG also describes well the fluctuations of conserved charges, e.g. $\frac{1}{V} \times \langle Q^2 \rangle$, $\langle B^2 \rangle$ and $\langle S^2 \rangle$.

Regularization of QCD on a lattice

Gluons: $U_{\mu}(x) = e^{iag_0A_{\mu}(x)} \in SU(3)$ 'link variables'

Quarks: $\psi(x)$ 'on site', Grassmann

Gauge-invariance exactly preserved; no gauge-fixing required.

Imaginary-time path-integral representation of QFT (Matsubara formalism):

Formally: Lattice QCD = 4d statistical mechanics system

Starting point for Monte-Carlo simulations using importance sampling

Near-equilibrium properties

Typical questions:

- What quasiparticles are there in the system?
- How fast does an external perturbation dissipate in the system? for long wavelength perturbations, the rate is parametrized by transport coefficients (shear/bulk viscosity, diffusion coefficients, ...) $\langle J_0(t, \mathbf{k}) \rangle_{\theta(-t)\mu(\mathbf{k})} \stackrel{t \text{ large}}{\propto} e^{-Dk^2t}$
- What is the production rate of photons or dileptons?

Formalism

Relation between the correlator and the spectral function: $G(x_0, \mathbf{p}) \equiv \int d^3x \ e^{-i\mathbf{p}\cdot\mathbf{x}} \left\langle J(x)^{\dagger}J(0) \right\rangle \stackrel{*}{=} \int_0^\infty \frac{d\omega}{2\pi} \ \rho(\omega, \mathbf{p}) \frac{\cosh[\omega(\beta/2 - x_0)]}{\sinh[\omega\beta/2]}.$

▶ in the low-T phase, J_i^{em} can excite e.g. an ω -meson-like quasiparticle.

• for
$$J = J_i^{\text{em}}$$
 electromagnetic current, $\rho(\omega, \mathbf{0}) \stackrel{\omega \to 0}{\sim} 6\chi_s D\omega$
 $\chi_s = \int d^4x \langle J_0^{\text{em}}(x) J_0^{\text{em}}(0) \rangle = \text{static susceptibility of electric charge}$
 $D = \text{diffusion coefficient}$

• photon rate:
$$\frac{d\Gamma}{d^3k} = \frac{e^2 \sum_f Q_f^2}{2(2\pi)^3 k} \frac{\rho(k, \mathbf{k})}{e^{\beta k} - 1}$$

* numerically ill-posed inverse problem for $\rho(\omega, \mathbf{p}) \stackrel{\omega > 0}{\geq} 0; \qquad 0 \leq x_0 < \beta.$

The inverse problem has many faces: here is one of them

Linearity:
$$\sum_{i=1}^{n} c_i(\bar{\omega}) G(t_i) = \int_0^\infty \frac{d\omega}{2\pi} \rho(\omega) \underbrace{\sum_{i=1}^{n} c_i(\bar{\omega}) \frac{\cosh[\omega(\beta/2 - t_i)]}{\sinh[\omega\beta/2]}}_{\widehat{\delta}(\bar{\omega},\omega)}$$

choose the coefficients c_i(ω) so that the 'resolution function' δ(ω,ω) is as narrowly peaked around a given frequency ω as possible (idea behind the Backus-Gilbert method, [used in Robaina et al. PRD 92 (2015) 094510.])

Resolution function at $\bar{\omega} = 4T$ for $N_t = 24$, $t_i/a = 5, \dots 12$.

- Resolution only improves slowly with increasing *n*
- Large, sign-alternating coefficients \Rightarrow need for ultra-precise input data.

Expected thermal changes in spectral functions

Isoscalar vector channel: spectral fct. of $J_i = \frac{1}{\sqrt{2}}(\bar{u}\gamma_i\bar{u} + \bar{d}\gamma_i d)$

▶ presence of weakly coupled quasiparticles \Rightarrow transport peak at $\omega = 0$; is it really there at $T \approx 260 \text{MeV}$?

SND hep-ex/0305049

 $D = \text{diffusion coefficient}; \ \chi_s = \text{static susceptibility}.$

The isovector vector channel at p = 0

fit ansatz method: simultaneous fit to all temperatures, because $\rho(\omega) \overset{\omega \to \infty}{\sim} (\# + \# \frac{\alpha_s}{\pi} + \dots) \omega^2$ with *T*-independent coefficients; • exact sum rule: $\int_0^\infty \frac{d\omega}{\omega} [\rho(\omega, T) - \rho(\omega, T')] = 0 \rightsquigarrow \text{ constraint};$

Francis et al. ($N_f=2, m_{\pi}|_{T=0}=267 {\rm MeV}, T_c=203 {\rm MeV}$), PRD93 (2016) 054510

Model-dependence of the spectral function

▶ fit ansatz method: simultaneous fit to all temperatures, because $\rho(\omega) \stackrel{\omega \to \infty}{\longrightarrow} (\# + \# \frac{\alpha_s}{\pi} + ...) \omega^2$ with *T*-independent coefficients; ▶ exact sum rule: $\int_0^\infty \frac{d\omega}{\omega} [\rho(\omega, T) - \rho(\omega, T')] = 0 \rightsquigarrow$ constraint; Francis et al. $(N_f = 2, m_\pi|_{T=0} = 267$ MeV, $T_c = 203$ MeV), PRD93 (2016) 054510

 \bullet shift of spectral weight from the ρ to low frequency region as T increases.

Francis et al. PRD93 (2016) 054510; Rapp & Hohler, PLB731, 103 (2014).

Calculations of the diffusion coefficient

- inverse problem treated with the Maximum Entropy Method;
- $D \propto \rho(\omega)/(\chi_s \omega)|_{\omega=0}$ comes out very small;
- stability of the results tested under variations in the procedure.

 $N_f = 2 + 1$ simulations, $m_{\pi}|_{T=0} = 384$ MeV, Aarts et al. JHEP 1502 (2015) 186. See also $N_f = 0$ continuum calculation using fit ansätze Ding, Kaczmarek, F. Meyer PRD94 (2016) 034504

Selected recent results for the light-quark diffusion coefficient D

- ▶ lattice calculations yield very low values, $D \approx 1/(\pi T)$;
- however, all results assume that no narrow transport peak is present: these methods would fail at very high temperatures.
- Except green point!

$T > T_c$: Heavy-quark momentum diffusion coefficient κ

$$G(\tau) = \frac{\left\langle \operatorname{Re}\operatorname{Tr}\left(U(\beta,\tau)gE_k(\tau,\mathbf{0})U(t,0)gE_k(0,\mathbf{0})\right)\right\rangle}{-3\left\langle \operatorname{Re}\operatorname{Tr}U(\beta,0)\right\rangle} = \int_0^\infty \frac{d\omega}{2\pi} \ \rho(\omega) \ \frac{\cosh[\omega(\beta/2-\tau)]}{\sinh[\omega\beta/2]}$$

• color parallel transporters $U(t_2, t_1)$ are propagators of static quarks

• (Lorentz) force-force correlator on the worldline of the quark.

$$\kappa = \lim_{\omega \to 0} \frac{T}{\omega} \rho(\omega), \qquad D = 2T^2/\kappa.$$

 $\begin{array}{l} {\rm NNLO\ calculation\ available:}\\ \rho(\omega)={\rm smooth\ function\ } \overset{\omega\to\infty}{\sim}g^2\omega^3. \end{array}$

Result: $2\pi TD = 3.7...6.9$

Francis, Kaczmarek, Laine, Neuhaus PRD92 (2015) 116003

Spectral function on the light-cone \rightsquigarrow photon rate $\frac{d\Gamma_{\gamma}}{d^{3}k}$

- ► at k = 0, a narrow transport peak cannot be excluded ⇒ large uncertainty on result for D.
- ▶ for $k \approx 2T$, a more reliable result for $D_{\text{eff}}(k)$ is possible: spectral function expected to be smooth;
- ▶ fit ansatz: polynom up to $\omega = \sqrt{k^2 + \pi^2 T^2}$, perturbation theory beyond.

 $N_f=0$, analysis in the continuum; Ghiglieri, Kaczmarek, Laine, F. Meyer PRD 94, 016005 (2016)

The pion quasiparticle in the low-temperature phase

- Chiral symmetry is spontaneously broken for $T < T_c$: $-\langle \bar{\psi}\psi \rangle > 0$.
- Goldstone theorem \Rightarrow a divergent spatial correlation length m_{π}^{-1} exists in the limit $m_{u,d} \rightarrow 0$.
- also: a massless real-time excitation exists: the pion quasiparticle.
- dispersion relation: [Son and Stephanov, PRD 66, 076011 (2002)]

$$\omega_{\boldsymbol{p}} = u(T)\sqrt{m_{\pi}^2(T) + \boldsymbol{p}^2} + \dots$$

► $T \leq 100$ MeV: Two-loop chiral perturbation theory prediction for the pion quasiparticle mass $u(T)m_{\pi}(T)$ [D. Toublan, PRD 56 5629 (1997)]

- ▶ key point: pion dominates parametrically the Euclidean two-point function of the axial charge density $(\int d^3x \ e^{i\mathbf{p}\cdot x} \ \bar{\psi}\gamma_0\gamma_5 \frac{\tau^a}{2}\psi)$ and its second derivative at $x_0 = \beta/2 \approx 0.6$ fm and $|\mathbf{p}| \lesssim 300$ MeV
- inverse problem can be solved via the ansatz

$$\rho_A(\omega, \boldsymbol{p}, T) = f_\pi^2(T) \ (m_\pi^2(T) + \boldsymbol{p}^2) \ \delta(\omega^2 - u^2(T)(m_\pi^2(T) + \boldsymbol{p}^2))$$

▶ here $m_{\pi}(T)$ and $f_{\pi}(T)$ are determined from screening (=static) correlation functions; from time-dependent correlator: u = 0.75(2) and

$$\begin{array}{ccc} T=0: & \mbox{pion mass}=267(2)\,\mbox{MeV}\\ \swarrow & \searrow \\ T=169\mbox{MeV}: & \mbox{quasiparticle mass}=223(4)\mbox{MeV} & \mbox{screening mass}=303(4)\mbox{MeV} \end{array}$$

- Simulation details: $N_f = 2$ (no strange quark); 24×64^3 lattice;
- Transition temperature $T_c \simeq 203 \text{MeV}$.
- ▲ How does this fit in with the success of the hadron-resonance gas model?

Robaina et al. PRD 90 (2014) 054509; PRD 92 (2015) 094510.

Conclusion

Significant progress in lattice QCD on near-equilibrium quantities:

- few-permille precision on correlation functions at small lattice spacings, even continuum in 'quenched' approximation
- advanced weak-coupling calculations, effective field theories, exact sum rules, ... provide crucial prior information on spectral function.
- many channels not discussed here: fate of quarkonium in the quark-gluon plasma, open-charm spectral functions, shear/sound channels, ...

Backup slides

Thermal fluctuations and correlations

Fig. from S. Borsanyi et al. 1112.4416

- Light-quark number susceptibility: suggests that deconfinement occurs practically at the same temperature as chiral restoration.
- Successful predictions of the HRG.

Pion channel, continued: description of the lattice data

$$\frac{1}{3} \int d^3x \ e^{i\mathbf{p}\cdot\mathbf{x}} \left\langle A_0^a(x)A_0^a(0) \right\rangle = \int_0^\infty \frac{d\omega}{2\pi} \ \rho^A(\omega,\mathbf{p}) \frac{\cosh[\omega(\beta/2-x_0)]}{\sinh[\omega\beta/2]}$$

Ansatz :
$$\rho^A(\omega, \mathbf{p}) = a_1(\mathbf{p})\delta(\omega - \omega_{\mathbf{p}}) + a_2(\mathbf{p})(1 - e^{-\omega\beta})\theta(\omega - c).$$