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Plan

Strongly interacting matter at temperatures T = 100− 500 MeV

I probed in heavy-ion collisions: hadrons → quark-gluon plasma

I state of matter for the first microsecond after Big Bang

Thermal physics: β = 1/(kT ),

〈A〉 =
1

Z
Tr {e−βHA}, Z = Tr {e−βH}

I Overview of equilibrium properties from lattice QCD

I Near-equilibrium (real-time) properties
I formalism
I vector channel for light quarks: dilepton rate, diffusion coefficient
I heavy-quark momentum diffusion coefficient
I pion quasiparticle in the hadronic phase
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QCD phase diagram
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I at µB = 0: Ttransition = 155± 8 MeV from lattice simulations (crossover)

I e.g. from chiral susceptibility
∫
d4x〈ψ̄(x)ψ(x) ψ̄(0)ψ(0)〉

[see e.g. review Soltz et al. 1502.02296].

Fig. from Braun-Munzinger, Koch, Schäfer, Stachel, Phys.Rept. 621 (2016) 76
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Thermodynamic potentials

Fig. from review by Soltz et al. 1502.02296

I at T = 260MeV, p ≈ 1/2pSB: far from weakly interacting quarks and
gluons;

I hadron resonance gas (HRG) model works well up to T = 160 MeV;

I HRG also describes well the fluctuations of conserved charges,
e.g. 1

V
× 〈Q2〉, 〈B2〉 and 〈S2〉.
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Regularization of QCD on a lattice
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Pµν

Uµ

µ

ν

Gluons: Uµ(x) = eiag0Aµ(x) ∈ SU(3)
‘link variables’

Quarks: ψ(x) ‘on site’, Grassmann

Gauge-invariance exactly preserved; no gauge-fixing required.

Imaginary-time path-integral representation of QFT (Matsubara formalism):

Formally: Lattice QCD = 4d statistical mechanics system

Starting point for Monte-Carlo simulations using importance sampling
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Near-equilibrium properties

Typical questions:

I What quasiparticles are there in the system?

I How fast does an external perturbation dissipate in the system?
for long wavelength perturbations, the rate is parametrized
by transport coefficients (shear/bulk viscosity, diffusion coefficients, . . . )

〈J0(t,k)〉θ(−t)µ(k)
t large∝ e−Dk

2t

I What is the production rate of photons or dileptons?
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Formalism

Relation between the correlator︸ ︷︷ ︸
computed on the lattice

and the spectral function︸ ︷︷ ︸
what we want to know

:

G(x0,p) ≡
∫
d3x e−ip·x

〈
J(x)†J(0)

〉
?
=

∫ ∞
0

dω

2π
ρ(ω,p)

cosh[ω(β/2− x0)]

sinh[ωβ/2]
.

I in the low-T phase, Jem
i can excite e.g. an ω-meson-like quasiparticle.

I for J = Jem
i electromagnetic current, ρ(ω,0)

ω→0∼ 6χsDω

χs =
∫
d4x〈Jem

0 (x)Jem
0 (0)〉 = static susceptibility of electric charge

D= diffusion coefficient

I photon rate: dΓ
d3k

=
e2
∑
f Q

2
f

2(2π)3 k
ρ(k,k)
eβk−1

? numerically ill-posed inverse problem for ρ(ω,p)
ω>0

≥ 0; 0 ≤ x0 < β.
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The inverse problem has many faces: here is one of them

Linearity:

n∑
i=1

ci(ω̄)G(ti) =

∫ ∞
0

dω

2π
ρ(ω)

n∑
i=1

ci(ω̄)
cosh[ω(β/2− ti)]

sinh[ωβ/2]︸ ︷︷ ︸
δ̂(ω̄,ω)

I choose the coefficients ci(ω̄) so that the ‘resolution function’ δ̂(ω̄, ω) is as
narrowly peaked around a given frequency ω̄ as possible
(idea behind the Backus-Gilbert method, [used in Robaina et al. PRD 92 (2015) 094510.])

λ = 0.002, ω̄/T = 5
λ = 0.01, ω̄/T = 5
λ = 0.5, ω̄/T = 5
λ = 1, ω̄/T = 4

ω/T

T
δ̂(
ω̄
,ω

)

121086420

0.25

0.2

0.15

0.1

0.05

0

Resolution function at ω̄ = 4T
for Nt = 24, ti/a = 5, . . . 12.

• Resolution only improves
slowly with increasing n

• Large, sign-alternating
coefficients ⇒ need for
ultra-precise input data.
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Expected thermal changes in spectral functions

Isoscalar vector channel: spectral fct. of Ji = 1√
2
(ūγiū+ d̄γid)
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intercept = 3 χs D / T

3 / (2 π)

SND e
+
e

-
 --> π

+
π

−
π

0

wk coupl T=260MeV

N=4 SYM λ=oo

I presence of weakly coupled quasiparticles ⇒ transport peak at ω = 0;
is it really there at T ≈ 260MeV ?

SND hep-ex/0305049 D = diffusion coefficient; χs = static susceptibility.
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The isovector vector channel at p = 0

Lattice QCD correlators
(T = 0.8, 1.0, 1.25, 1.67× Tc)

Spectral functions

↓1GeV

I fit ansatz method: simultaneous fit to all temperatures, because
ρ(ω)

ω→∞∼ (# + #αs
π

+ . . . )ω2 with T -independent coefficients;

I exact sum rule:
∫∞

0
dω
ω

[ρ(ω, T )− ρ(ω, T ′)] = 0  constraint;

Francis et al. (Nf = 2, mπ|T=0 = 267MeV, Tc = 203MeV), PRD93 (2016) 054510
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Model-dependence of the spectral function

Alternative ansatz at T = Tc
Spectral functions

↓1GeV

I fit ansatz method: simultaneous fit to all temperatures, because
ρ(ω)

ω→∞∼ (# + #αs
π

+ . . . )ω2 with T -independent coefficients;

I exact sum rule:
∫∞

0
dω
ω

[ρ(ω, T )− ρ(ω, T ′)] = 0  constraint;

Francis et al. (Nf = 2, mπ|T=0 = 267MeV, Tc = 203MeV), PRD93 (2016) 054510
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Lattice QCD vs. phenomenology
∆̂ρ(ω, T ): lattice vs. pheno Phenomenological model.

• compare ∆̂ρ(ω,T )
tanh(ωβ/2)

≡
∫∞
0 dω′ δ(ω, ω′) ∆ρ(ω′,T )

tanh(ω′β/2)
: lattice result is model-independent.

• shift of spectral weight from the ρ to low frequency region as T increases.

Francis et al. PRD93 (2016) 054510; Rapp & Hohler, PLB731, 103 (2014).
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Calculations of the diffusion coefficient

I inverse problem treated with the Maximum Entropy Method;
I D ∝ ρ(ω)/(χsω)|ω=0 comes out very small;
I stability of the results tested under variations in the procedure.

Nf = 2 + 1 simulations, mπ|T=0 = 384MeV, Aarts et al. JHEP 1502 (2015) 186.

See also Nf = 0 continuum calculation using fit ansätze Ding, Kaczmarek, F. Meyer PRD94

(2016) 034504
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Selected recent results for the light-quark diffusion coefficient D
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 0.4
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 0.8
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 1  1.2  1.4  1.6  1.8  2

D
 T

T/Tc

AMY hep-ph/0302165 αs=0.3

Nf=0, heavy-quark
1508.04543

AdS/CFT

Nf=2+1, 1412.6411
Nf=2, 1512.0729

Nf=0, 1604.06712

I lattice calculations yield very low values, D ≈ 1/(πT );

I however, all results assume that no narrow transport peak is present:
these methods would fail at very high temperatures.

I Except green point!
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T > Tc: Heavy-quark momentum diffusion coefficient κ

G(τ) =

〈
Re Tr

(
U(β, τ)gEk(τ,0)U(t, 0)gEk(0,0)

)〉
−3 〈Re TrU(β, 0)〉

=

∫ ∞
0

dω

2π
ρ(ω)

cosh[ω(β/2− τ)]

sinh[ωβ/2]

• color parallel transporters U(t2, t1) are propagators of static quarks
• (Lorentz) force-force correlator on the worldline of the quark.

κ = lim
ω→0

T

ω
ρ(ω), D = 2T 2/κ.

NNLO calculation available:

ρ(ω) = smooth function
ω→∞∼ g2ω3.

Result: 2πTD = 3.7 . . . 6.9

Francis, Kaczmarek, Laine, Neuhaus

PRD92 (2015) 116003
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Spectral function on the light-cone  photon rate dΓγ
d3k

Deff(k) =


ρV (k,k)

2χqk
k > 0

limω→0+
ρii(ω,0)

3χqω
k = 0

;
dΓγ

d3k
=

2αemχq

3π2

Deff(k)

eβk − 1
.

I at k = 0, a narrow transport peak cannot be excluded ⇒ large uncertainty
on result for D.

I for k ≈ 2T , a more reliable result for Deff(k) is possible: spectral function
expected to be smooth;

I fit ansatz: polynom up to ω =
√
k2 + π2T 2, perturbation theory beyond.

Nf = 0, analysis in the continuum; Ghiglieri, Kaczmarek, Laine, F. Meyer PRD 94, 016005 (2016)

Harvey Meyer Lattice QCD and transport coefficients



The pion quasiparticle in the low-temperature phase
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I Chiral symmetry is spontaneously broken for T < Tc: −〈ψ̄ψ〉 > 0.

I Goldstone theorem ⇒ a divergent spatial correlation length m−1
π exists in

the limit mu,d → 0.

I also: a massless real-time excitation exists: the pion quasiparticle.

I dispersion relation: [Son and Stephanov, PRD 66, 076011 (2002)]

ωp = u(T )
√
m2
π(T ) + p2 + . . .

I T . 100MeV: Two-loop chiral perturbation theory prediction for the pion
quasiparticle mass u(T )mπ(T ) [D. Toublan, PRD 56 5629 (1997)]

Quasiparticle mass

full: physical quark mass

dashed: massless case.

Harvey Meyer Lattice QCD and transport coefficients



I key point: pion dominates parametrically the Euclidean two-point function
of the axial charge density (

∫
d3x eip·x ψ̄γ0γ5

τa

2
ψ) and its second

derivative at x0 = β/2 ≈ 0.6fm and |p| . 300MeV

I inverse problem can be solved via the ansatz

ρA(ω,p, T ) = f2
π(T ) (m2

π(T ) + p2) δ(ω2 − u2(T )(m2
π(T ) + p2))

I here mπ(T ) and fπ(T ) are determined from screening (=static)
correlation functions; from time-dependent correlator: u = 0.75(2) and

T = 0 : pion mass = 267(2)MeV

↙ ↘
T = 169MeV : quasiparticle mass = 223(4)MeV screening mass = 303(4)MeV.

I Simulation details: Nf = 2 (no strange quark); 24× 643 lattice;

I Transition temperature Tc ' 203MeV.

N How does this fit in with the success of the hadron-resonance gas model?

Robaina et al. PRD 90 (2014) 054509; PRD 92 (2015) 094510.
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Conclusion

Significant progress in lattice QCD on near-equilibrium quantities:

I few-permille precision on correlation functions at small lattice
spacings, even continuum in ‘quenched’ approximation

I advanced weak-coupling calculations, effective field theories,
exact sum rules, . . . provide crucial prior information on
spectral function.

I many channels not discussed here: fate of quarkonium in the
quark-gluon plasma, open-charm spectral functions,
shear/sound channels, . . .
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Backup slides
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Thermal fluctuations and correlations

Fig. from S. Borsanyi et al. 1112.4416

I Light-quark number susceptibility: suggests that deconfinement occurs
practically at the same temperature as chiral restoration.

I Successful predictions of the HRG.
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Pion channel, continued: description of the lattice data

GA(x0, T,p5)
GA(x0, T,p4)
GA(x0, T,p3)
GA(x0, T,p2)
GA(x0, T,p1)

x0/a

121110987654

0.000090

0.000080

0.000070

0.000060

0.000050

0.000040

0.000030

0.000020

0.000010

ρ(
ω

,p
)

ω

1

3

∫
d3x eip·x 〈Aa0(x)Aa0(0)〉 =

∫ ∞
0

dω

2π
ρA(ω,p)

cosh[ω(β/2− x0)]

sinh[ωβ/2]
.

Ansatz : ρA(ω,p) = a1(p)δ(ω − ωp) + a2(p)(1− e−ωβ)θ(ω − c).
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