Reaction Dynamics for the Systems ⁷Be,⁸B + ²⁰⁸Pb at Energies Around the Coulomb Barrier

Marco Mazzocco

Dipartimento di Fisica e Astronomia, Università di Padova and INFN – Sezione di Padova, Padova, Italy

26th International Nuclear Physics Conference (INPC) Adelaide Convention Centre, Australia 11-16 September 2016

I. Introduction

Light Exotic Nuclei

The light portion of the nuclide chart is full of **weakly-bound nuclei** with **unusual** matter distributions (**halo** and **neutron skin** nuclei).

Near-Barrier Studies

What is the influence of the nuclear halo on the reaction dynamics?
Depending on the treatment of the projectile breakup process, theoretical models predicted either the enhancement or the hindrance of the sub-barrier fusion cross section.
Breakup related effects largely increased the sub-barrier total reaction cross section, mainly because of direct processes.

A. Lemasson et al., PRL 103, 232701 (2009)

Elastic Scattering: strong deviations from the Rutherford differential cross section already at **small angles**. M. Cubero et al., PRL 109, 262701 (2012)

II. Facility EXOTIC at INFN-LNL (Italy)

The In-Flight Facility EXOTIC

Facility at the Laboratori Nazionali di Legnaro (LNL) of the INFN for the in-flight production of light weakly-bound RIBs, employing inverse kinematics reactions with heavy projectiles impinging on gas targets (p,d,³He).

The **commissioning** of the facility was performed in 2004. F. Farinon et al., NIM B 266, 4097 (2008)

A **substantial upgrade process** was subsequently held in 2012. M. Mazzocco et al., NIM B 317, 223 (2013)

7 Radioactive Ion Beams have been delivered so far:

- 1. 17 F (S_p = 600 keV):
- 2. ⁸B ($S_p = 137.5 \text{ keV}$):
- 3. ⁷Be ($S_{\alpha} = 1.586$ MeV):
- 4. ${}^{15}O(S_p = 7.297 \text{ MeV})$:
- 5. ⁸Li ($S_n = 2.033$ MeV):
- 6. ${}^{10}C (S_p = 4.007 \text{ MeV}):$
- 7. ${}^{11}C$ (S_p = 8.689 MeV):

p(¹⁷O,¹⁷F)n ³He(⁶Li,⁸B)n p(⁷Li,⁷Be)n p(¹⁵N,¹⁵O)n d(⁷Li,⁸Li)p p(¹⁰B,¹⁰C)n p(¹¹B,¹¹C)n $Q_{value} = -3.54 \text{ MeV};$ $Q_{value} = -1.97 \text{ MeV};$ $Q_{value} = -1.64 \text{ MeV};$ $Q_{value} = -3.54 \text{ MeV};$ $Q_{value} = -0.19 \text{ MeV};$ $Q_{value} = -4.43 \text{ MeV};$ $Q_{value} = -2.76 \text{ MeV};$

Facility EXOTIC at INFN-LNL

Light RIBs at EXOTIC

E = 3-5 MeV/uPurity: 93-96 %E = 3-5 MeV/uPurity: 30-43 %E = 2.5-6 MeV/uPurity: 99 %E = 1.3 MeV/uPurity: 97-98 %E = 2-2.5 MeV/uPurity: 99 %E = 4 MeV/uPurity: 99 %E = 4 MeV/uPurity: 99 %

Intensity: 10^5 pps Intensity: ~ 10^3 pps Intensity: 10^6 pps Intensity: $4*10^4$ pps Intensity: 10^5 pps Intensity: $5*10^3$ pps Intensity: $2*10^5$ pps

Experiments (2006 - 2012)

¹⁷F + ²⁰⁸Pb [Quasi-Elastic Scattering and Breakup] C. Signorini et al., Eur. Phys. J. A 44, 63 (2010)

- ¹⁷F + ⁵⁸Ni [Quasi-Elastic Scattering] M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010)
- ¹⁷F + ¹H [Elastic Scattering] N. Patronis et al., Phys. Rev. C 85, 024609 (2012)
- ⁸**B** + ²⁸**Si** [Fusion]

A. Pakou et al., Phys. Rev. C 87, 014619 (2013)

⁷Be + ⁵⁸Ni [Elastic Scattering, Direct Processes] M. Mazzocco et al., Phys. Rev. C 92, 024615 (2015)

Experiments (2013 - 2016)

- ³²S+ ⁴⁸Ca, ⁶⁴Ni [Recoil Separation (PRISMA)] Spokesperson: G. Montagnoli, A.M. Stefanini, M. Mazzocco
- ⁷Be + ²⁰⁸Pb [Elastic Scattering, Direct Processes] Spokespersons: M. La Commara, L.Stroe, M. Mazzocco
- ⁷Be + ²⁸Si [Breakup Threshold Anomaly] A. Pakou et al., PRC (submitted)
- ⁸Li + ⁵⁸Ni [Elastic Scattering] Spokespersons: D. Torresi, M. Mazzocco
- ⁸Li + ⁹⁰Zr [Total Reaction Cross Section] A. Pakou at al., Eur. Phys. J. A 51, 55 (2015)
- ¹⁵O + ⁴He [Resonant Scattering] D. Torresi, C. Wheldon, Tz. Kokalova et al., PRL (submitted)
- ⁷Be + ²H [Surrogate Trojan Horse Reaction for ⁷Be+n] Spokesperons: L. Lamia, C. Spitaleri, M. Mazzocco

III. ⁷Be + ²⁰⁸Pb @ EXOTIC

⁷Be + ²⁰⁸Pb at LNL

 $\Delta E-E_{res}$ Plots

(Quasi-) Elastic Scattering

Total Reaction Cross Section

A preliminary optical model best-fit analysis of the quasi-elastic scattering angular distributions suggests for ⁷Be ($S_{\alpha} = 1.586$ MeV) a behaviour more similar to ⁷Li ($S_{\alpha} = 2.468$ MeV) than to ⁶Li ($S_{\alpha} = 1.475$ MeV).

^{3,4}He Production

The ⁴He production yield is much larger than the ³He production yield, **qualitatively confirming** our previous result for the system ⁷Be + ⁵⁸Ni. M. Mazzocco et al., Phys. Rev. C 92, 024615 (2015)

$^{7}Li + {}^{208}Pb$

Theoretical calculations by A.M. Moro and J.Lei (University of Seville, Spain) [unpublished]

What is the Origin of ^{3,4}He?

³He and ⁴He have significantly different yields, thus the **reaction dynamics** is **not dominited** by the **breakup** process.

³He (97.5%) and ⁴He (99.5%) mostly come as single events, however we detected a few coincidences: 19 ³He+⁴He (Exclusive Breakup) 15 ⁴He+⁴He (n-pickup)

17 ⁴He+p (open question? Evaporation?)

IV. ⁸B + ²⁰⁸Pb @ CRIB

⁸B+²⁰⁸Pb at 50 MeV

ΔE -ToF Plots

 ΔE (channel)

⁸B + ²⁰⁸Pb Elastic Scattering

Reaction Cross Section

Very preliminary optical-model best-fit analysis of the ⁸B+²⁰⁸Pb elastic scattering angular distribution would suggest a **total reaction cross section a factor of 3 larger** than for the reaction ⁷Be+²⁰⁸Pb.

V. Summary

- The study of the **reaction dynamics** induced by light weaklybound Radioactive Ion Beams (**RIBs**) at near-barrier energies is currently a very **active research field** in Nuclear Physics.
- Our facility, **EXOTIC**, is **fully operational** at **INFN-LNL** and 7 light RIBs for reaction dynamics studies have been delivered.
- **Very promising results** have been obtained for the system ⁷Be +²⁰⁸Pb: elastic scattering and ^{3,4}He production yields.
- ⁴He ions were found to be much more abundant than ³He and we detected a few ³He+⁴He (exclusive breakup), ⁴He+⁴He (n-pickup) and ⁴He+p coincidence events.
- The elastic scattering for the system ⁸B+²⁰⁸Pb was measured at CRIB (Japan). The total reaction cross section is enhanced by a factor of 3 with respect to the reaction ⁷Be+²⁰⁸Pb.

Honestly speaking, I hope we will be able to answer at least one of the open questions by the **FUSION17 Conference (in 5 months)** ③

EXOTIC Collaboration... & Collaborators

Napoli: A. Boiano, M. La Commara, G. La Rana, D. Pierroutsakou, C. Parascandolo

Padova: M.M., C. Signorini, F. Soramel, E. Strano

LNL-Padova (Italy): C.Broggini, A.Caciolli, L.Corradi, R.Depalo, E. Fioretto, F.Galtarossa, J.A. Lay, R.Menegazzo, D. Mengoni, G. Montagnoli, D.Piatti, F. Scarlassara, A.M. Stefanini

LNS-Catania (Italy): D.Carbone, M.Cavallaro, S.Cherubini, A.Di Pietro, J.P.Fernandez-Garcia, P.Figuera, M.Fisichella, M.Gulino, M.La Cognata, L.Lamia, M.Lattuada, R.G.Pizzone, S.Puglia, G.G.Rapisarda, S.Romano, C.Spitaleri, D.Torresi, O.Trippella (PG), A.Tumino

Milano (Italy): C. Boiano, A.Guglielmetti

CNS + RIKEN (Japan): H.Yamaguchi, S. Hayakawa, D.Kahl, Y.Sakaguchi, S.Kubono (RIKEN), N.Iwasa (Sendai), T.Teranishi (Kyushu), Y.Wakabayashi (RIKEN)

KEK (Japan): H.Miyatake, S.Jeong, Y.Watanabe, H.Ishiyama, N.Imai (CNS), Y.Hirayama, Y.H.Kim, S.Kimura, I.Mukai, I.Sugai

CIAE (China): H.Q.Zhang, C.J.Lin, H.Jia, Y.Yang, L.Yang, G.L.Zhang

Ioannina (Greece): A.Pakou, O.Sgouros, V.Soukeras, E.Stiliaris, X.Aslanouglou

Warsaw (Poland): N.Keeley, C.Mazzocchi, K.Rusek, I.Strojek, A.Trzcinska

NIPNE (Romania): D.Filipescu, T.Glodariu, A.I.Gheorghe, T.Sava, L.Stroe

Huelva (Spain): I.Martel, L.Acosta, G.Marquinez-Duran, A.M.Sanchez-Benitez, H.Silva

Birmingham (UK): T.Kokalova, C.Wheldon

Thank You Very Much!!!

Backup

⁸B + ²⁰⁸Pb Counting Statistics

⁸B Production at CRIB

⁶Li Primary Beam: 3 eµA on target Production Target: ³He gas at 90 K and 1 bar

⁸B Secondary Beam:
Energy: 50.0 ± 1.0 MeV (on target)
Intensity (on target): 10⁴ pps
Purity: 20 % (main contaminant: ⁷Be and ³He)

Reaction Target: 2.2 mg/cm² ²⁰⁸Pb evaporated on 1.5 μm of Mylar. **Diameter:** 25 mm

6,7Li-7Be Comparison

	⁶ Li+ ²⁰⁸ Pb	⁷ Li+ ²⁰⁸ Pb	⁷ Be+ ²⁰⁸ Pb
Breakup Thr.	-1.475	-2.468	-1.586
n-pickup	⁷ Li: -0.12	⁸ Li: -5.34	< 8Be: +11.53
2n-pickup	⁸ Li: -4.82	⁹ Li: -8.01	⁹ Be: +6.46
p-pickup	7 Be: -2.40	⁸ Be: +9.25	⁸ B: -7.87
p-stripping	⁵ Li: -0.63	⁶ Li: -3.31	⁶ Be: -6.74
d-stripping	⁴ He: +4.71	⁵ He: -3.28	⁵ Li: -2.87
d-pickup	⁸ Be: +9.65	⁹ Be: +4.06	⁹ B: +3.86
⁴ He-stripping	² H: -10.43	³ H: -11.42	³ He: -10.54
t-stripping	³ He: -10.73	⁴ He: +2.59	⁴ Li: -19.44
³ He-strripping	³ H: -10.18	⁴ H: -19.03	⁴ He: +4.03

Stable Projectiles - Fusion

In the Eighties a **significant enhancement** of the **fusion** cross section was observed at energies below the **Coulomb barrier**.

Static EffectDynamic Effect(Target Deformation)(Positive Q-value Transfer Channels)Static and dynamic effectsenhance the fusion probability.

What will happen with weakly-bound/halo/neutron-skin RIBs?

Reaction Cross Section Enhancement

Breakup related effects turned out to increase the **total reaction cross section** rather than the fusion probability.

 ^{4,6}He+²⁰⁹Bi: E.F. Aguilera et al., Phys. Rev. Lett. 84 (2000) 5058

^{4,6}He+⁶⁴Zn: A. Di Pietro et al., Phys. Rev. C. 69 (2004) 044613

The quest has now moved towards understanding what **reaction mechanisms** are mainly responsibile for the **total reaction cross section enhancement**.

Stable Projectiles - Scattering

Elastic scattering differential cross sections at near-barrier energies usually develop a peak due to the **Nuclear-Coulomb interference**.

No Strong Coupling Effects

¹⁸O+¹⁸⁴W: Strong Coupling Effects to Target Excitations

Strong Coupling Effects may suppress the "Fresnel" peak. N. Keeley, K.W. Kemper and K. Rusek, Eur. Phys. J. A 50 (2014) 145.

What has been observed so far with weakly-bound RIBs?

Sorting the Data: Time Signal

⁷Be ($S_{\alpha} = 1.586$ MeV)

⁷Be: weakly-bound
³He-⁴He cluster structure
⁸B core

⁷Li Primary BeamEnergy: 34.2 MeVIntensity: 100 pnA

¹H₂ Gas Target
 Pressure: 1 bar
 Temperature: 90 K

⁷Be Secondary Beam E_{lab} : (22.0 ± 0.4) MeV Intensity: 2.5*10⁵ pps Purity: > 99 %

58Ni Target:1 mg/cm²

^{3,4}He Single Detection

 $Q_{value} = E_{He} + E_{recoil} - E_{beam}$ ³He reconstructed Q_{value}
spectra compatible (within
0.5 MeV) with the Q_{opt} for
the ⁴He-stripping process.
(Q_{opt} ~ -9 MeV)
D.M. Brink, Phys. Lett. B 40, 37 (1972)

³He-stripping and Fusion-Evaporation foresee very similar ⁴He energy distributions. At backward angles we have an excellent agreement with the predictions of PACE2

A. Gavron, Phys. Rev. C 21, 230 (1980)

What's the ³He/⁴He origin?

3.

Exclusive Breakup: ⁷Be → ³He + ⁴He;

³He

These processes require a **coincidence** event in the reaction exit channel: **NO COINCIDENCE DETECTED** (only upper limits can be provided) Exclusive Breakup ⁷Be → ³He + ⁴He;

⁴He

- 2. **n-Stripping:** $\rightarrow {}^{6}Be (= {}^{4}He + 2p) + {}^{59}Ni$ $(Q_{gg} = -1.68 \text{ MeV});$
 - **n-Pickup:** ⁸Be (= 2⁴He) + ⁵⁷Ni + 6.68 MeV);

 $(Q_{gg} =$

2. ⁴He-Stripping: ⁷Be + ⁵⁸Ni \rightarrow ³He + ⁶²Zn (Q_{gg} = +1.78 MeV).

Single detection of ³He and ⁴He: AS EXPERIMENTALLY OBSERVED

- 4. ³He-Stripping: ⁷Be + ⁵⁸Ni \rightarrow ⁴He + ⁶¹Zn (Q_{gg} = + 9.46 MeV); 5. ⁴He evaporation after compound
 - nucleus formation (Fusion).

⁷Be + ⁵⁸Ni: Summary

ELASTIC SCATTERING

Remarkable agreement with an earlier measurement and with DWBA calculations without free parameters.

FUSION

 α -multiplicity in agreement with PACE2 predictions.

DIRECT PROCESSES 3 He (34.4 ± 6.3 mb) 4 He (44.1 ± 9.9 mb)Exclusive Breakup (10. 8 mb)Exclusive Breakup (10. 8 mb)Exclusive Breakup (10. 8 mb)1n-stripping (9.8 mb) 4 He-stripping (23.6 mb) 3 He-stripping (11.4 mb)

Remark: Higher statistical accuracy and **larger geometrical efficiency** for the detection of coincidences would be highly desirable.