# Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Prog. Theor. Exp. Phys. 2016, 013D01



Yoshihiko Kobayashi and <u>Masayuki Matsuo</u> Niigata University, Japan

#### Back ground

- > Most excitation modes become resonances in nuclei close to drip-line.
- > Pair correlation influences strongly ground state and low-lying excitations.
- Quasi-particle resonance (Belyaev et al. 1987) has a chance to be observed, in place of single-particle potential resonance.

#### Purpose of present study

We intend to disclose novel features of the quasi-particle resonance. Example: p-wave resonance in <sup>47</sup>Si =(<sup>46</sup>Si + n)

# Nucleon in continuum is influenced by pairing



Fig. J. Meng, et al Prog. Part. Nucl. Phys. 57, 470 (2006)

### **Bogoliubov equation and quasi-particle resonance**



Bogoliubov equation for the coupled single-particle motion (hole & particle components)
 S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987)

- A. Bulgac, arXiv:nucl-ph/9907088
- J. Dobaczewski et al., Nucl. Phys. A 422 103 (1984)

$$\begin{bmatrix} -\frac{\Delta}{2m} + U_{lj}(r) - \lambda & \Delta(r) \\ \Delta(r) & \frac{\Delta}{2m} - U_{lj}(r) + \lambda \end{bmatrix} \begin{bmatrix} u_{lj}(r) \\ v_{lj}(r) \end{bmatrix} = E_i \begin{bmatrix} u_{lj}(r) \\ v_{lj}(r) \end{bmatrix}$$

## **Bogoliubov quasi-particle in the continuum**

#### Scattering boundary condition for the Bogoliubov's quasi-particle

$$\frac{1}{r} \begin{pmatrix} u_{lj}(r) \\ v_{lj}(r) \end{pmatrix} = C \begin{pmatrix} \cos \delta_{lj} j_l(k_1 r) - \sin \delta_{lj} n_l(k_1 r) \\ Dh_l^{(1)}(i\kappa_2 r) \end{pmatrix} \xrightarrow[r \to \infty]{} C \begin{pmatrix} \frac{\sin\left(k_1 r - \frac{l\pi}{2} + \delta_{lj}\right)}{k_1 r} \\ 0 \end{pmatrix}$$

- phase shift, S-matrix
  - elastic cross section

#### for A+n scattering resonances in (A+n) system

#### Numerical model

- Mean-field U(r) : Woods-Saxon potential
- Pair-field ∆(r): Woods-Saxon form

its strength (av. pair gap  $\Delta$ ) is varied

## Neutron elastic scattering on <sup>46</sup>Si: (<sup>46</sup>Si+n)\*



is estimated by the Woods-Saxon-Bogoliubov calculation

H. Oba and M. Matsuo, PRC80. 024301 (2009)

5

#### Weakly bound orbits emerge as resonances due to pairing

6



#### **Quasi-particle resonance in S-matrix**

 The quasi-particle resonance appears as a pole of S-matrix in complex k plane.
 p<sub>1/2</sub>-wave



#### Dependence on pair correlation strength $\overline{\Delta}$



 $\Delta = 0.0 - 3.0 MeV$ 

Cf. Typical value of pair gap  $\Delta = 12.0/\sqrt{A} MeV = 12.0/\sqrt{46} \approx 1.7 MeV$ 

# Width $\Gamma$ & Resonance energy $e_R$

#### Phase shift



• Both  $\Gamma$  and  $e_R$  increase for larger pairing strength.

# Increase of Γ is modest moderate value of Γ even for e<sub>R</sub> > barrier height

## **Comparison with simple potential resonance**

# $e_R$ - $\Gamma$ relation



Potential resonance 2p1/2  $\Delta$ =0, e=0 ~ 0.6 MeV Quasi-particle resonance  $\Delta$ =0~3 MeV, e<sub>2p1/2</sub>=0.251 MeV  $\Delta$ =0~3 MeV, e<sub>2p1/2</sub>=-0.056 MeV

Pairing *reduces* the width

compared at the same resonance energy

NB. Opposite trend known previously for deep-hole quasi-particle resonance  $\ \Gamma \varpropto \Delta^2$ 

| e <sub>R</sub> =0.45 MeV |       |       |        |  |
|--------------------------|-------|-------|--------|--|
| <mark>∆</mark> [MeV]     | 0.0   | 1.634 | 1.897  |  |
| $\Gamma$ [MeV]           | 0.854 | 0.652 | 0.453  |  |
| $\Delta V[MeV]$          | 3.677 | 2.0   | 0.0    |  |
| e <sub>sp</sub> [MeV]    | 0.450 | 0.250 | -0.056 |  |

#### Systematics of resonance width $\Gamma$ and resonance energy



11

## **SAMURAI experiments for unbound nuclei**

SAMURAI experiments@RIBF (2012~)



#### ( 👃 ) priv. comm. Takashi Nakamura





<sup>22</sup>N→<sup>21</sup>C\*→<sup>20</sup>C+n S.Mosby et al.(MSU) NPA909,69(2013).





## S-wave scattering in (<sup>20</sup>C + n)

#### $\Delta=\!0\sim 5~MeV$ varied



These are very different from the low-energy formula  $\kappa$ 

| Δ [MeV] | 1/a [fm <sup>-1</sup> ] | r <sub>eff</sub> [fm] |
|---------|-------------------------|-----------------------|
| 0.0     | 0.0790                  | 5.373                 |
| 1.0     | 0.00825                 | -1.478                |
| 2.0     | -0.9279                 | -109.617              |
| 3.0     | 0.3160                  | -69.521               |
| 4.0     | 0.3018                  | -14.192               |

$$\delta V_0 = 0.0 \text{ MeV} \\ \overline{\Delta} = 0.0 \text{ MeV} \\ 1 d_{5/2} : -0.221 \text{ MeV} \\ \overline{\Delta} = 0.0 \text{ MeV} \\ 1 d_{5/2} : -0.230 \text{ MeV} \\ 2 s_{1/2} : -0.250 \text{ MeV} \\ \end{array}$$

### S-matrix behavior in (<sup>20</sup>C + n) s-wave



A resonance pole emerges at low energy

#### Conclusion

# We have investigated effects of the pair correlation on low-lying neutron resonance in n-rich drip-line nuclei

P-wave resonance in <sup>47</sup>Si<sup>\*</sup> (<sup>46</sup>Si + n scattering)

It exhibits novel behaviors, not seen in s.p. potential resonance

• Resonance is allowed to **exist above the barrier energy** 

The pairing effect on the resonance width has two faces:
 i) to increase the width (in case of hole origin e<sub>s.p</sub> < Fermi eng)</li>
 ii) to REDUCE the width (in the other case e<sub>s.p</sub> > Fermi eng)

 Consequently, its width is necessarily smaller than the s.p. potential resonance

#### Outlook

- S-wave resonance /scattering is more dramatic ......under study

# **Backup**

## Analysis of the resonance wave functions

• Probability distribution of the resonances with  $e \downarrow R = 0.45 MeV$  $u \downarrow p 1/2 (r) / 12 + |v \downarrow p 1/2 (r) / 12$ the sum of particle component and hole component.



The hole component which is localized inside the nucleus (/vlp1/2(r)/12) becomes larger with increasing of

The reducing of the width of particlelike quasi-particle resonance.

## Analysis of the resonance wave functions

• Probability distribution of the hole-like quasi-particle resonances with  $e\downarrow R = 1.50 MeV$ .



• The hole component (|vlp1/2(r)|/2) decreases with increasing of  $\Delta$ . (opposite behavior of particle-like case)

The width of hole-like quasi-particle resonance is increased by the pairing.

S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987) A. Bulgac, Preprint(1980); nucl-th/9907088

## The Hartree-Fock-Bogoliubov equation

#### • The HFB equation in the coordinate spaced J. Dobaczewski et al., Nucl. Phys. A 422 103 (1984) $(\blacksquare -\hbar^{12} / 2m d^{12} / dr^{12} + U \downarrow lj (r) - \lambda \& \Delta(r) @ \Delta(r) \& \hbar^{12} / 2m d^{12} / dr^{12} - U \downarrow lj (r) + \lambda ) (\blacksquare u \downarrow l)$ $(\blacksquare \varphi \downarrow i^{1}(1) (x) @ \varphi \downarrow i^{1}(2)$ $(x) = 1/r (\blacksquare u \downarrow lj (r) @ v \downarrow lj$ $(r) [Y \downarrow l (\theta, \varphi) \chi \downarrow 1/2$ $U \downarrow lj (r)$ : HF potential with *l* · *s* interaction, $\Delta(r)$ : Pair potential

The pairing correlation is described by the pair potential.

 Scattering boundary condition for the Bogoliubov's quasi-particle

 $\frac{1}{r} \left( \blacksquare u \downarrow lj(r) @v \downarrow lj(r) \right) = \mathcal{C} \left( \blacksquare \cos \delta \downarrow lj j \downarrow l(k \downarrow 1 r) - \sin \delta \downarrow lj n \downarrow l(k \downarrow 1 r) @D h \downarrow l^{\uparrow}(1)(i \kappa \downarrow 2 r) \right) \rightarrow r \rightarrow \infty + \mathcal{C} \left( \blacksquare \sin(k \downarrow 1 r - l \pi / 2 + \delta \downarrow lj)/k \downarrow 1 r @0 \right)$ 

 $kJ1 = \sqrt{2m(\lambda + E)/\hbar 12}$ ,  $\kappa J2 = \sqrt{2\pi(\lambda - E)/\hbar 12} \pi$  S. T. Belyaev et al., Sov. J. Nucl. Phys. 45 783 (1987) M. Grasso et al., Phys. Rev. C 64 064321 (2001) I. Hamamoto et al., Phys. Rev. C 68 034312 (2003)

#### The BCS theory in nuclear physics

#### Superconductors have been described by the BCS theory with the electron Cooper pairs (1957).

PHYSICAL REVIEW

VOLUME 108, NUMBER 5

DECEMBER 1, 1957

Theory of Superconductivity\*

J. BARDEEN, L. N. COOPER,<sup>†</sup> AND J. R. SCHRIEFFER<sup>‡</sup> Department of Physics, University of Illinois, Urbana, Illinois (Received July 8, 1957)

## Bohr, Mottelson and Pines applied the BCS theory to the nuclear excitation spectra (1958).

PHYSICAL REVIEW

VOLUME 110, NUMBER 4

MAY 15, 1958

#### Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State

A. BOHR, B. R. MOTTELSON, AND D. PINES\*

Institute for Theoretical Physics, University of Copenhagen, Copenhagen, Denmark, and Nordisk Institut for Teoretisk Atomfysik, Copenhagen, Denmark (Received January 7, 1958)

#### Width $\Gamma$ vs. Resonance energy $e_r$

 The resonance width and energy are extracted from the calculated phase shifts for quantitative analysis.



Both the resonance width  $\Gamma$  and the resonance energy *etR* increase as the strength of the pairing  $\Delta$  increases.

## The pairing has the effect of *reducing* the width



#### $e\downarrow R = 0.45 \text{MeV}$

| Δ          | [MeV]           | 0.0   | 1.634 | 1.897  |
|------------|-----------------|-------|-------|--------|
| Γ          | [MeV]           | 0.854 | 0.652 | 0.453  |
| $\Delta V$ | ℓ <b>∮</b> MeV] | 3.677 | 2.0   | 0.0    |
| e↓s        | p[MeV]          | 0.450 | 0.250 | -0.056 |

The dependence of s.p. resonance width and energy ( $\Delta = 0.0 MeV$ ) on  $\Delta V \downarrow 0$ 

The dependence of **q.p.** resonance width and energy  $(e\downarrow 2p1/2 = 0.251 \text{ MeV})$  on  $\Delta$ 

The dependence of **q.p.** resonance width and energy  $(e\downarrow 2p1/2 = -0.056$ *MeV*) on  $\Delta$ 

In order to extract the mixing effect by the pairing, we compare these three curves at the same resonance energy (eJR=0.45 MeV).

#### **R-process and neutron-rich nuclei**

 Our ultimate goal: we contribute the understand of neutron capture phenomena in the r-process using many-nucleon theory (nuclear structure and reaction).



# R-process:

- Rapid neutron capture and β-decay in neutronrich nuclei.
- Site: supernova explosion
  - and neutron star merger.
  - **Energy scale:** *E*\$1 *MeV*

We need describe low-energy neutron capture phenomena in neutron-rich nuclei.

#### Low-energy neutron capture and continuum

• The temperature of supernova :  $T \sim 10 \text{ fr} K = 10 \text{ fr} K$ 

The structure of continuum near neutron emission threshold in neutron-rich nuclei is important for the r-process neutron capture phenomena.

 We study low-lying single-particle resonance in neutron drip-line nuclei with the pairing correlation.



### The resonance width and the pairing correlation

#### Well bound nuclei $\lambda \approx -8.0$ eV

- Quasi-particle resonance associated with a deephole orbit can emerge.
- In analysis of the resonance width, the pairing effect is treated in a perturbative way.

 $(\epsilon \downarrow i - \lambda)$ <sup>1</sup>2  $\gg \Delta$ <sup>1</sup>2

S. T. Belyaev et al., Sov. J. Nucl. Phys, 45 783 (1987)

A. Bulgac, Preprint(1980); nucl-th/9907088

J. Dobaczewski et al., Phys. Rev. C 53 2809 (1996)

The resonance width is evaluated on the basis of Fermi's golden rule.

 $\Gamma \downarrow i = 2\pi / \int \uparrow d \uparrow 3 r \varphi \downarrow i (r) \Delta(r) \varphi \downarrow \epsilon(r) / \uparrow 2 \propto / \Delta \downarrow a verage / \uparrow 2$ 

#### The resonance width and the pairing correlation

#### **Weakly bound nuclei** $\lambda \approx 0.0 \sim -1.0$ **eV**

 The pairing correlation may cause strong configuration mixing between weakly bound orbits and low-lying continuum orbits. (e↓i - λ)<sup>12</sup> ≤ Δ<sup>12</sup>

## The perturbative description may not be applicable.



We expect an undisclosed relation between the quasi-particle resonance and the pairing.

We analyze in detail how the width of the low-lying  $(E \leq 1 \text{MeV})$  quasi-particle resonance is governed by the pairing correlation in the neutron drip-line nuclei without perturbative way.

## The Hartree-Fock-Bogoliubov theory

(which is equivalent to the Bogoliubov-de Gennes theory)

The generalized Bogoliubov transformation

 $\psi(x) = \sum_{i=1}^{\infty} \varphi_{i}i^{\uparrow}(1)(x) \beta_{i}i - \varphi_{i}i^{\uparrow}(2)(x)\beta_{i}i^{\uparrow}(x) x = r, \sigma$ 

 $\beta \downarrow i | HFB \rangle = 0$ 

Bogoliubov quasi-particle has the two components.

 $\varphi \downarrow i(x) = (\blacksquare \varphi \downarrow i^{\uparrow}(1)(x) @\varphi \downarrow i^{\uparrow}(2)(x)) = 1/r (\blacksquare u \downarrow lj(r) @v \downarrow lj(r)) [PTI(\varphi,\varphi)] \times 1/2 (\sigma)$ 

(with spherical symmetry)

Upper component: "particle" component Lower component: "hole" component

# The upper component could be scattering wave in weakly bound nuclei.

My notation is same as J. Dobaczewski, H. Flocard and J. Treiner, Nucl. Phys. A 422 103 (1984) M. Matsuo, Nucl. Phys. A 696, 371 (2001)

#### The Hartree-Fock-Bogoliubov equation

#### The density and the pairing density

 $\rho(x) = HFB\psi^{\uparrow}(x)\psi(x)HFB = \sum i^{\uparrow} |\varphi_{\downarrow}i^{\uparrow}(2)(\alpha)|_{HFB} = HFB\psi(x)\psi(x)HFB = \sum i^{\uparrow} |\varphi_{\downarrow}i^{\uparrow}(1)(x)\varphi_{\downarrow}|_{HFB}$ 

# The HFB equation in the coordinate space

J. Dobaczewski et al., Nucl. Phys. A 422 103 (1984)  $(\blacksquare -\hbar^{2} / 2m d^{2} / dr^{2} + U \downarrow lj (r) - \lambda \& \Delta(r) @ \Delta(r) \& \hbar^{2} / 2m d^{2} / dr^{2} - U \downarrow lj (r) + \lambda ) (\blacksquare u \downarrow lj (I) (x) @ \varphi \downarrow i^{2} (2) (x) = 1 / (I) (x) @ \varphi \downarrow i^{2} (2) (x) = 1 / r (\blacksquare u \downarrow lj (r) @ v \downarrow lj (r) ) [Y \downarrow l (\theta, \varphi) \chi \downarrow 1 / 2 (\sigma)] \downarrow jm$ 

 $U \downarrow lj(r)$ : HF potential with  $l \cdot s$  interaction,  $\Delta(r)$ : Pair potential

The pairing correlation is described by the pair potential.



## Asymptotic form of quasi-particle in finite nuclei



# **Scattering boundary condition**

 We consider a system consisting of a superfluid nucleus and impinging neutron.

We adopt an approximation:

The unbound neutron is treated as an unbound quasi-particle state, governed by the HFB eq., built on a pair-correlated even-even nucleus.

# Scattering boundary condition on the Bogoliubov quasi-particle (with positive *E*).

 $\frac{1}{r} \left( \blacksquare u \downarrow lj(r) @v \downarrow lj(r) \right) = \mathcal{C} \left( \blacksquare \cos \delta \downarrow lj j \downarrow l(k \downarrow 1 r) - \sin \delta \downarrow lj n \downarrow l(k \downarrow 1 r) @D h \downarrow l \uparrow (1) (i \kappa \downarrow 2 r) \right) \rightarrow r \rightarrow \infty_{\tau} \mathcal{C} \left( \blacksquare \sin(k \downarrow 1 r - l\pi/2 + \delta \downarrow lj) / k \downarrow 1 r @0 \right)$ 

 $k \downarrow 1 = \sqrt{2}m(\lambda + E)/\hbar 12$ ,  $\kappa \downarrow 2 = \sqrt{-2}m(\lambda - E)/\hbar 12^2 \pi$  S. T. Belyaev et al., Sov. J. Nucl. Phys. 45 783 (1987) M. Grasso et al., Phys. Rev. C 64 064321 (2001) I. Hamamoto et al., Phys. Rev. C 68 034312 (2003)

## The possibility of observing the q.p. resonance

- The level density of low-lying region is low. Thus coupling to complex configuration are expected to be suppressed.
- At the same resonance energy, the width of particle-like q.p. resonance is narrower than that of s.p. potential resonance.
- The q.p. resonance can exist above the centrifugal barrier.



 The order of q.p. resonances is opposite to the order of s.p. potential resonances.





## s wave and the pairing correlation in drip-line nuclei

 The neutron halo is a typical example of the pairing correlation effect on weakly bound s wave neutron.

Ex) The studies of s wave and the pairing correlation in drip-line nuclei

Pairing anti-halo effect K. Bennaceur et al., Phys. Lett. B 496 154 (2000) Diverging wave function is suppressed by the pairing

 $\Delta(r)$ 

V(r

Virtual state

Occupied states

Reduced effective pair gap I. Hamamoto, B. R. Mottelson Phys. Rev. C 69 064302 (2004)
Influence of the pairing on s wave is small



- Not only weakly bound s wave neutron but also...
  - virtual state at 0 energy
     Low-energy s wave scattering are influenced by the pairing.

## <sup>20</sup>Cにおける一中性子弾性散乱:(<sup>20</sup>C+n)\*

低エネルギーs波中性子散乱
 の分析を<sup>20</sup>Cにおけるー中性
 子弾性散乱を通して行う。

弱束縛s軌道 → virtual state

●Woods-Saxonポテンシャル 中の弱束縛2<sub>s1/2</sub>軌道を用意。



| <mark>⊁ 19</mark><br>7.22s | • | <b>Ve- 20</b><br>90.48     | Ne- 21<br>0.27          | Ne- 22<br>9.25          | Ne- 23<br>37.24s       | Ne- 24<br>3.38m         | Ne- 25<br>602ms                          | Ne- 26<br>197ms         | Ne- 27<br>31.5ms          | Ne- 28<br>20ms                     | Ne- 1           |
|----------------------------|---|----------------------------|-------------------------|-------------------------|------------------------|-------------------------|------------------------------------------|-------------------------|---------------------------|------------------------------------|-----------------|
| - 18<br>.830h              | ľ | F- <b>19</b><br>100        | <b>F-20</b><br>11.163s  | <b>F-21</b><br>4.158s   | <b>F-22</b><br>4.23s   | <b>F-23</b><br>2.23s    | <b>F- 24</b><br>390ms                    | F- 25<br>80ms           | <b>F-26</b><br>9.7ms      | <b>F- 27</b><br>5.0ms              | F- 2            |
| <b>- 17</b><br>0.038       | ( | 0-18<br>0.205              | <b>O - 19</b><br>26.88s | <b>O - 20</b><br>13.51s | <b>0 - 21</b><br>3.42s | <b>0-22</b><br>2.25s    | <b>O - 23</b><br>97ms                    | <b>0 - 24</b><br>65ms   | <b>0 - 25</b><br>2.8E-21s | <b>0 - 26</b><br>4.5ps             |                 |
| <mark>- 16</mark><br>7.13s | ' | <b>N - 17</b><br>4.173s    | N - 18<br>619ms         | N - 19<br>271ms         | N - 20<br>130ms        | N - 21<br>83.0ms        | <b>N - 22</b><br>24ms                    | <b>N - 23</b><br>14.1ms |                           |                                    |                 |
| <mark>- 15</mark><br>.449s | 0 | <b>C - 16</b><br>747ms     | <b>C - 17</b><br>193ms  | <b>C - 18</b><br>92ms   | <b>C - 19</b><br>49ms  | <b>C - 20</b><br>14ms   |                                          | <b>C - 22</b><br>6.1ms  |                           |                                    |                 |
| <mark>- 14</mark><br>2.5ms | E | <b>3 - 15</b><br>9.93ms    | B - 16                  | <b>B - 17</b><br>5.08ms | B - 18                 | <b>B - 19</b><br>2.92ms |                                          |                         |                           |                                    |                 |
| ► 13<br>0E-21s             | B | 8e-14<br>4.84ms            | Be- 15                  | Be- 16<br>6.5E-22s      |                        |                         | N=                                       | <b>:14</b>              | I.                        |                                    |                 |
|                            | 1 |                            |                         |                         |                        |                         |                                          |                         |                           |                                    |                 |
| - 12                       |   | L <b>i- 13</b><br>3.6E-21s |                         | •••                     |                        |                         | www                                      | V Chart o               | of the Nu                 | clides 20                          | 14              |
| - 12                       |   | LI- 13<br>3.6E-21s         |                         |                         |                        |                         | wwy                                      | V Chart c               | of the Nu                 | clides 20                          | 14              |
| - 12                       |   | L- 13<br>3.6E-21s          | sp                      |                         |                        |                         | www<br>SV s                              | $\ell 0 =$              | of the Nu                 | clides 20<br>V                     | 74              |
| - 12                       |   | LF 13<br>3.6E-21s          | sp                      | ••••                    |                        | 1 d                     | www<br>SV s                              | l(0 = 0.2)              | 0.0                       | V                                  | 14              |
| - 12                       |   | L- 13<br>3.6E-21s          | sp                      |                         |                        | 1d <sub>5</sub>         | δV.<br>/2 : -                            | $t^{0} = 0.2$           | 0.0<br>21                 | v<br>v<br>Ve                       | 14              |
| - 12                       |   | L- 13<br>3.6E-21s          | sp                      |                         |                        | 1d <sub>5</sub><br>Fer  | <i>δV</i> ,<br><sub>/2</sub> : -<br>mi : | 0 =<br>0.2<br>-0.2      | 0.0<br>21  <br>230        | clides 20<br>V<br>Ve∖<br>Me∖       | )4<br>/<br>V    |
| - 12                       |   | L- 13<br>3.6E-21s          | sp                      |                         |                        | 1d₅<br>Fer<br>2s₁,      | <i>δV</i> ,<br>/2 : -<br>mi :<br>/2 : -  | 0 =<br>-0.2<br>-0.2     | 0.0<br>21  <br>230        | clides 20<br>V<br>Me\<br>Me<br>Ve\ | )14<br>//<br>// |

## Virtual stateと一粒子軌道



## 低エネルギー公式でvirtual stateを記述する

●低0エネルギー極限の低エネルギー公式を用いた
 Fittingにより、散乱長(a)と有効距離(r<sub>eff</sub>)を位相のずれ
 から抽出する。 kcotδ = -1/a + 1/2 kt2 rJeff

 低エネルギー公式が有効だと考えられる範囲でFitting を行う。(0<esp<0.3 MeV)</li>
 krleff << 1.0</li>

| δV <sub>0</sub> [MeV] | 1/a [fm <sup>-1</sup> ] | r <sub>eff</sub> [fm] |
|-----------------------|-------------------------|-----------------------|
| 0.0                   | 0.0790                  | 5.373                 |
| 1.0                   | 0.0590                  | 5,839                 |
| 2.0                   | 0.0335                  | 6.401                 |
| 3.0                   | -0.000363               | 7.275                 |
| 4.0                   | -0.0475                 | 8.762                 |
| 5.0                   | -0.1981                 | 11.296                |
| 6.0                   | -0.2466                 | 16.637                |

1/aが非常に小さい値。 (Virtual state)



## Virtual stateは対相関によっても生ずることがある



## 対相関効果は低エネルギー公式では記述できない

●対相関なしのときと同様に、低エネルギー公式から散
 乱長と有効距離を抽出する。
 kl1=√2m(λ+E)/h12
 波数はparticle成分波動関数のもの。



散乱長の符号がポテンシャル散乱とは異なる。
 有効距離が負の値になる。



## 結論:virtual state(s波散乱)に対する対相関効果

●対相関の効果によってもVirtual stateが生ずる。 ●位相のずれや弾性散乱断面積は、ポテンシャル散乱の ときとは異なる振る舞いをする。  $k \cot \delta \cong -1/a + 1/2 \ k \uparrow 2 \ r \downarrow eff$ ●低エネルギー公式を超える振る舞い。





課題:平方井戸型ポテンシャルを用いた解析的分析 実験データ(SAMURAI)との比較

# Effects of pairing correlation on the s-wave scattering in neutron-rich nuclei



<u>Yoshihiko Koayashi</u>, Masayuki Matsuo (*Niigata University, Japan*)

Pairing correlation and continuum coupling in weakly bound nuclei (neutron-rich nuclei)

The Hartree-Fock-Bogoliubov theory in the coordinate space (Bogoliubov-de Gennes theory)

> Numerical results for  $({}^{20}C+n)^*$ :  $\sigma \downarrow s 1/2$ ,  $\delta \downarrow s 1/2$ , a, and  $r \downarrow eff$ 

Conclusion and perspective

## Pairing correlation influences the continuum

## Many nuclei with open-shell configuration have superfluidity generated by the pairing correlation.



The pairing correlation causes configuration mixing > among bound orbits in well bound nuclei.
<sup>1</sup>/<sub>2</sub>~8 MeV

involving both bound and unbound (continuum) orbits in weakly bound nuclei. <sup>A~0 MeV</sup>

## Scattering particle is influenced by the pairing



Figure is taken from J. Meng et. al., Prog. Part. Nucl. Phys. 57, 470 (2006)



In present study, we analyze properties of <u>low</u> <u>energy s-wave scattering and virtual state</u> on neutron-rich nuclei with the pairing correlation.

Low angular momentum wave (s and p) can approach nuclei easily due to no or small centrifugal barriers.

#### Pairing theory in the coordinate space is needed The Hartree-Fock-Bogoliubov theory can describe both the pairing correlation and scattering waves. J. Dobaczewski, H. Flocard and J. Treiner, Nucl. Phys. A 422 103 (1984) \*This is called the Bogoliubov-de Gennes theory in solid state nhysics Hole component $\psi(x) = \sum_{i=1}^{n} \varphi_{i\uparrow(1)}(x) \beta_{i} = \varphi_{i\uparrow(2)} \beta_{i\uparrow(2)} \beta_{i\uparrow(2)}$ Generalized Bogoliubov transformation **Particle component** Hartree-Fock (can be scattering w.f.) potential $(\blacksquare - \hbar 12/2n d1z/dr 12 + U \downarrow lj(r) - \lambda \& \Delta(r) @ \Delta(r) \& \hbar 12/2m d12$ Hartree-Fock-**Bogoliubov** equation $* ( \blacksquare \varphi \downarrow i \uparrow (1) (x) @ \varphi \downarrow i \uparrow (2) (x) ) =$ Pair potentia $1/r (\blacksquare u \downarrow l j (r) @ v \downarrow l j (r) ) [Y \downarrow l]$ (0, a) = (1, 0, (-)) = (1, a)

## Numerical calc.: Boundary condition and potentials

#### • Scattering boundary condition $(E > -\lambda)$

 $\frac{1}{r} \left( \blacksquare u \downarrow lj(r) @v \downarrow lj(r) \right) = \mathcal{C} \left( \blacksquare \cos \delta \downarrow lj j \downarrow l(k \downarrow 1 r) - \sin \delta \downarrow lj n \downarrow l(k \downarrow 1 r) @D h \downarrow l^{1}(1)(i \kappa \downarrow 2 r) \right) \rightarrow r \rightarrow \infty + \mathcal{C} \left( \blacksquare \sin(k \downarrow 1 r - l \pi / 2 + \delta \downarrow lj)/k \downarrow 1 r @0 \right)$ 

 $k \downarrow 1 = \sqrt{2}m(\lambda + E)/\hbar 12$ ,  $\kappa \downarrow 2 = \sqrt{2} \frac{2}{2}m(\lambda - E)/\hbar E$  Prelyaev et al., Sov. J. Nucl. Phys. 45 783 (1987) N. Grasso et al., Phys. Rev. C 64 064321 (2001) I. Hamamoto et al., Phys. Rev. C 68 034312 (2003)

• HF potential and pair potential  $\leftarrow$  Woods-Saxon shape  $U \downarrow lj(r) = [V \downarrow 0 + (l \cdot s) V \downarrow SO r \downarrow 0 f 2 / r d/dr] f \downarrow WS(r) = f \downarrow WS(r) = [1 + exp(r - R/a)] f \downarrow WS(r)$ 

We can control the shapes easily through the parameters.

•  $\Delta \mu$  is controlled by the average pair gap  $\Delta$ .

 $\Delta = \int f \, dr \, r \, f^2 \, \Delta(r) \, f \, \psi S(r) \, / \\ \int f \, dr \, r \, f^2 \, f \, \psi S(r) \, I. \text{ Hamamoto, B. R. Mottelson, Phys, Rev. C 68 034312 (2003)}$ 

## Neutron elastic scattering on <sup>20</sup>C: (<sup>20</sup>C+n)\*



2s<sub>1/2</sub> orbit is located around the continuum threshold → virtual state







# (<sup>20</sup>C+n)\*: elastic cross sections and phase shifts



- Calculation is performed for various values of the potential depth (*sv1*0).
- *sv* = 3.0 MeV case corresponds to a virtual

$$\delta V_0 = 0.0 \text{ MeV} \\ \overline{\Delta} = 0.0 \text{ MeV} \\ 1 d_{5/2} : -0.221 \text{ MeV} \\ \overline{\Delta} = 0.0 \text{ MeV} \\ 1 d_{5/2} : -0.230 \text{ MeV} \\ \overline{2s_{1/2}} : -0.250 \text{ MeV} \\ 2 s_{1/2} : -0.250 \text{ MeV} \\ \end{array}$$

(<sup>20</sup>C+n)\*: scattering length and effective range
 The scattering length (*a*) and the effective range (*r*↓*eff*) are extracted from the calculated phase shift with low-energy effective range formula.

 $k \cot \delta \cong -1/a + 1/2 \ k \uparrow 2 \ r \downarrow eff$ 

## • Fitting is done in $0 < e \downarrow sp < 0.3$ MeV.

 $applicable region of the effective range formula: <math>k r leff \ll 1.0$ 

| δV <sub>0</sub> [MeV] | 1/a [fm <sup>-1</sup> ] | r <sub>eff</sub> [fm] |                     |
|-----------------------|-------------------------|-----------------------|---------------------|
| 0.0                   | 0.0790                  | 5.373                 |                     |
| 1.0                   | 0.0590                  | 5.839                 |                     |
| 2.0                   | 0.0335                  | 6.401                 |                     |
| 3.0                   | -0.000363               | 7.275 🧹               |                     |
| 4.0                   | -0.0475                 | 8.762                 | (1/a) is very small |
| 5.0                   | -0.1981                 | 11.296                | value./             |
| 6.0                   | -0.2466                 | 16.637                |                     |

## Elastic cross section and phase shift with pairing



- Calculation is performed for various values of the pairing strength (<sup>Δ</sup>).
- σ↓s1/2 and s↓s1/2 are influenced by the pairing.

$$\delta V_0 = 0.0 \text{ MeV} \\ \overline{\Delta} = 0.0 \text{ MeV} \\ 1d_{5/2} : -0.221 \text{ MeV} \\ \overline{\Delta} = 0.0 \text{ MeV} \\ 1d_{5/2} : -0.230 \text{ MeV} \\ 2s_{1/2} : -0.250 \text{ MeV} \\ \end{array}$$

#### Pairing effect cannot be described by effective range formula

The scattering length and the effective are extracted from the calculated phase shift. kJ1 = √2m(λ+E)/ħ12
 kJ1 is k of the particle component.



The nature of extracted results are very different from A = 0.0 MeV case.



beyond the effective range formula

#### **Conclusion and perspective**

 Elastic cross section σιι and phase shift σιι are influenced by the pairing strongly.

20

15

10

5

0

-5

-10

-15

- The effect of pairing correlation cannot be described by the effective range formula.
- In progress...:  $\Delta = 0.0 MeV$   $\Delta = 1.0 MeV$   $\Delta = 2.0 MeV$



Im(S\$\$1/2)

Im(S\_0) with  $\delta V_0{=}0.0 \text{MeV}, \, \bar{\Delta}{=}0.0 \text{MeV}, \, \lambda{=}{-}0.230 \text{MeV}.$ 







Im(S<sub>0</sub>) with  $\delta V_0$ =0.0MeV,  $\bar{\Delta}$ =1.0MeV,  $\lambda$ =-0.230MeV.



Re(S<sub>0</sub>) with  $\delta V_0=0.0$  MeV,  $\bar{\Delta}=2.0$  MeV,  $\lambda=-0.230$  MeV.



Im(S<sub>0</sub>) with  $\delta V_0$ =0.0MeV,  $\bar{\Delta}$ =2.0MeV,  $\lambda$ =-0.230MeV.

