Study of Halo Nature via Reaction and Neutron Removal Cross Sections

<u>Takuma Matsumoto</u>, Shin Watanabe¹, Masakazu Toyokawa and Yahiro Masanobu (Kyushu Univ., ¹RIKEN)

International Nuclear Physics Conference Adelaide Australia, Adelaide Conventional Centre 11-16 September

Introduction

Halo nuclei
 Weakly bound neutron(s) in s- or p-wave orbit.
 Large radius

Reaction cross section \checkmark Enhancement of σ_R

Villari et al., PLB268, 345, Fang et al., PRC69.034613.

■ Neutron removal cross section ✓ Enhancement of σ_{1n}

Yamaguchi et al., NPA724, 3, Zheng et al., NPA709, 103.

Analysis of ¹⁵C and ¹⁶C

Properties of one neutron halo ¹⁵C and neighboring nucleus ¹⁶C are investigated via analyses of reaction and neutron removal cross sections.

¹⁵C: ¹⁴C + n two-body model

$$H_{15_{C}} = -\frac{\hbar^{2}}{2\mu_{y}} \nabla_{y}^{2} + V_{nc}(y)$$

$$V_{nc} : \text{central} + \text{LS} + \text{OCM}^{[1]}$$

$$1s_{1/2+}: -1.215 \text{ MeV}$$

$$0d_{5/2+}: -0.478 \text{ MeV}$$

$$W_{nc} : \text{central} + \text{LS} + \text{OCM}^{[1]}$$

$$V_{nc} : \text{central} + \text{LS} + \text{OCM}^{[1]}$$

$$H_{16_{C}} = -\frac{\pi}{2\mu_{r}} \nabla_{r}^{2} - \frac{\pi}{2\mu_{y}} \nabla_{y}^{2} + V_{nc}(y_{1}) + V_{nc}(y_{2}) + V_{nn}(y_{3}) + V_{nnc}(r, y)$$

V_{nn} : BonnA *V_{nnc}*: *Phenomenological 3BF*

[1]Hagino, and Sagawa., PRC75, 021301

Structure of ¹⁶C

15**C** $1s_{1/2+}$: -1.215 MeV $0d_{5/2+}$: -0.478 MeV

n

n

Ground state wave function of ¹⁶C

$$\Phi({}^{16}C) = \alpha \left| \phi({}^{14}C) \otimes (s_{1/2})^2 \right\rangle + \beta \left| \phi({}^{14}C) \otimes (d_{5/2})^2 \right\rangle + \cdots$$

$$14C$$

 \checkmark Probability of each configuration can be optimized with V_{nnc} .

Type I:
$$\alpha = 0.7, \beta = 0.6(\alpha > \beta)$$
 s-dominant structure
Type II: $\alpha = 0.4, \beta = 0.8(\alpha < \beta)$ *d*-dominant structure

✓ From analyses of reaction, we discuss which is better structure.

Three- and Four-Body Reactions

Breakup processes of ¹⁵C and ¹⁶C are treated by *CDCC*.

(Review) Yahiro, Ogata, TM, Minomo, PTEP01A206, (2012).

Three-body scattering system of ¹⁵C

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + H_{15} + U_n + U_c - E \end{bmatrix} \Psi = 0$$

Four-body scattering system of ¹⁶C

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu} \nabla^2 + H_{16} + U_n + U_n + U_c - E \end{bmatrix} \Psi = 0$$

M. Toyokawa et al., PRC92, 024618 (2015)

Optical Potential

Optical potentials of *n*-T and ¹⁴C-T are calculated by folding model with *g* matrix based on χ -EFT (N³LO 2BF, N²LO 3BF).

Reaction Cross Section on ²⁸Si

 $^{14-16}C + ^{28}Si @45-50 MeV/nucl$

✓ For ¹⁶C, σ_R of s-dominant is larger than σ_R of ddominant.

- $\checkmark \sigma_R \text{ of } d\text{-dominant is well} \\ reproduce the odd-even \\ deviation.$
- ✓ Main configuration of valence two neutrons of ¹⁶C is (0d_{5/2})².

M. Yahiro, K. Ogata, K. Minomo, PTP126, 167 (2011).

Eikonal Reaction Theory

□ S-matrix in eikonal approximation

$$S = S_n S_c$$

Stripping cross section (one neutron)

$$\sigma_n = \int db \langle \phi_0 || S_c |^2 \left(1 - |S_n|^2 \right) |\phi_0 \rangle$$

Eikonal Reaction Theory (ERT)

Hussein and McVoy NPA445, 124 (1985)

 \succ $S_c(S_n)$ is estimated by solving *Eikonal-CDCC* equation with only $U_n(U_c)$.

$$\left[-\frac{\hbar^2}{2\mu_R}\nabla_R^2 + h_r + U_n(r,R) - E\right]\Psi(r,R) = 0 \quad \text{for } S_n$$

 $\left[-\frac{\hbar^2}{2\mu_R}\nabla_R^2 + h_r + U_c(r,R) - E\right]\Psi(r,R) = 0 \quad \text{for } S_c$

1-neutron Removal of ¹⁵C & ¹⁶C

ERT and CDCC well reproduce 1n removal cross sections of ¹⁵C and ¹⁶C

 $(d_{5/2})^2$ configuration in ¹⁶C is preferred.

Expt. Yamaguchi et al., NPA724, 3. Zheng et al., NPA709, 103.

Yahiro, Watanabe, Toyokawa, TM, PRC93, 064609 (2016)

Yahiro, Watanabe, Toyokawa, TM, PRC93, 064609 (2016)

H defined by σ_{1n-str}

✓ Glauber model approx.

$$\sigma_{1n-str} \approx \sigma_{abs}({}^{15}C) - \sigma_{abs}({}^{14}C)$$

New definition of \mathcal{H} with σ_{ln-str}

$$\mathcal{H} \approx \frac{\sigma_{1n-str}}{\sigma_{R}(n)}$$

Summary

■ We investigate halo (¹⁵C) and neighboring nuclei (¹⁴C,¹⁶C) with core + neutron(s) model.

- For analyses of σ_R and σ_{1n} , we found main configuration of the ground state of ${}^{16}C$ is $(d_{5/2})^2$.
- ERT and CDCC calculations well reproduce one-neutron removal cross sections of ¹⁵C and ¹⁶C.
- New definition of Halo parameter.
- Future work
- ✓ Calculation of two-neutron removal cross section
- ✓ Other systems ($^{10-12}Be$, $^{18-20}C$, $^{30-32}Ne$)