A Large Ion Collider Experiment

ALICE

ALICE future upgrades and perspectives

Massimo Masera, for the ALICE Collaboration University of Torino and I.N.F.N.

International Nuclear Physics Conference Adelaide Convention Centre, Australia 11-16 September 2016

Outline

- ALICE and the LHC schedule
- Running conditions after the next LHC Long Shutdown
- ➡ ALICE Upgrade:
 - -motivations
 - -strategy
- The upgraded detector:
 - new Inner Tracking System (ITS)
 - new Muon Forward Tracker (MFT)
 - Time Projection Chamber (TPC) upgrade
 - Online-Offline (O²)system.
- Expected physics performance a personal selection.
- Conclusions

Pb-Pb @ sqrt(s) = 2.76 ATeV 2011-11-12 06:51:12 Fill : 2290 Run : 167693 Event : 0x3d94315a

A Large Ion Collider Experiment

ALICE

- ALICE is one of the 4 large experiments at the the LHC.
- It was explicitly designed to study Heavy Ion collisions.
- ALICE goal: reconstruct and identify charged particles in a central rapidity window to low transverse momentum (p_T~100 MeV/c for pions)
- Central barrel (|η|<1): tracking (ITS, TPC), PID (TOF,TRD), calorimeters.
- Muon spectrometer: -4<η<-2.5</p>
- Forward detectors: triggering, centrality, timing.

700

INPC 2016 | Sep 12th, 2016 | M. Masera

4

ALICE Performance: vertexing & tracking

LHC Heavy Ion Program and ALICE upgrade ALICE

The LHC heavy-ion program will extend to Run 3 and Run 4

- High interaction rate: from 8kHz to 50 kHz for Pb-Pb $(\mathcal{L} = 6 \times 10^{27} \text{ cm}^{-2} \text{s}^{-1})$
- Slight energy increase: from $\sqrt{s_{NN}}=5.02$ TeV to $\sqrt{s_{NN}}=5.5$ TeV
- ALICE requested Pb-Pb integrated luminosity: >10 nb⁻¹ (x100 w.r.t. Run 1)

A major detector upgrade has been approved for the LS2 to fully exploit the higher rate and to improve the physics performance

➡The LHC data confirmed the expectations after the RHIC results:

- the hot matter created in nucleus-nucleus collisions at the LHC behaves as a strongly interacting plasma with a very short mean free path.
- QGP has the properties of an almost ideal liquid: radial and elliptic flow.
- QCD energy loss in the plasma: jet quenching, nuclear modification factor.
- The LHC data brought also unexpected phenomena like collectivity and strangeness enhancement in p-Pb and high multiplicity pp collisions.
- With the presently available data, several issues have been addressed, however:
 - there are physics channels that cannot be studied with the present detector.
 - the available integrated luminosity is a limit for rare signals.
- →The higher luminosity after LS2 will provide the needed statistics.
- ➡The purpose of the ALICE upgrade is twofold:
 - -to exploit the high interaction rate with a MB trigger for low S/B signals.
 - -to allow for higher precision where needed

- The main physics topics will exploit the specific ALICE potentials.
- → ALICE will carry out high precision measurements of rare signals with main focus on the low p_T region:

– Charm and beauty hadrons - spectra and flow:

- Energy loss of HF in the hot and dense medium produced in AA collisions
- Thermalization and hadronization mechanisms (coalescence vs fragmentation)
- Study possible thermal production

- The main physics topics will exploit the specific ALICE potentials.
- → ALICE will carry out high precision measurements of rare signals with main focus on the low p_T region:

– Charm and beauty hadrons - spectra and flow:

- Energy loss of HF in the hot and dense medium produced in AA collisions
- Thermalization and hadronization mechanisms (coalescence vs fragmentation)
- Study possible thermal production

A few examples concerning the Heavy Flavor sector in the next slides

Where higher precision/statistics are needed? ALICE

- Open Heavy Flavors are excellent probes for the medium...
- There is evidence that low p_T charm quarks participate in the collective expansion
- A more precise measurement and higher statistics will allow for a better comparison with light flavor hadrons and with the models.

Where higher precision/statistics are needed? ALIC

- Smaller R_{AA} of D mesons w.r.t. B mesons $(J/\psi \leftarrow B)$ as expected from mass-dependent energy loss. **Results are limited to high** p_{T} .
- ⇒ R_{AA} (D)≈ R_{AA}(π). The color charge dependency of energy loss is compensated by the softer fragmentation and p_T spectrum of gluons (M. Djordjevic, Phys. Rev. Lett. 112 (2014) 042302)
- Hints for a R_{AA} (D_s⁺)> R_{AA} (D); if confirmed it would indicate charm hadronization through recombination in medium

Where higher precision/statistics are needed? ALICE

Baryon to meson enhancement

- Increase from low to high multiplicity collisions in p-Pb and Pb-Pb
- Trend qualitatively similar in in different colliding systems
- The enhancement at intermediate p_T can be explained in Pb-Pb by collective flow and/or quark recombinations
- Charm and Beauty baryons cannot be reconstructed in Pb-Pb with the present detector
- More generally, direct reconstruction of Beauty is not possible with the present detector

➡ ALICE will carry out high precision measurements of rare signals with main focus on the low p_T region:

– Quarkonia down to p_T~0

- wide rapidity range: e.g. $J/\psi \rightarrow e^+e^-$ at midrapidity and $J/\psi \rightarrow \mu^+\mu^-$ at forward rapidity
- dissociation and recombination mechanisms in a deconfined medium.
- $\psi(2S)$ measurement will help to disentangle the mechanisms at work

– Low mass dileptons:

- e.m. radiation from the QGP
- temperature, EOS and space-time evolution
- chiral symmetry restoration (modification of the spectral function for ρ meson \rightarrow dileptons).

- Jets:

- quenching and fragmentation
- PID of jet particle content
- Heavy Flavour tagging

- Light nuclei and hypernuclei (e.g. ⁴He, ⁵_{AA}H)

Pb-Pb @ sqrt(s) = 2.76 ATeV 2011-11-12 06:51:12 Fill : 2290 Run : 167693 Event : 0x3d94315a

ALICE Upgrade: strategy

Boundary conditions and requirements:

- very low signal/background ratio for most of the physics signals \rightarrow **no trigger selection possible**.
- -High rate: $\mathcal{L} = 6 \times 10^{27} \ cm^{-2} s^{-1} \Longrightarrow R = 50 \ kHz$
- Focus on heavy flavors → improve track resolution and vertexing.
- -large minimum bias samples required: L_{int} >10 nb⁻¹.

Strategy:

- -New Inner Tracking System at midrapidity.
- -Narrower beam pipe: from R=29 mm to R=17.2 mm.
- -New Muon Forward Tracker in front of the muon absorber.
- -New readout chambers for the **TPC**. Readout upgrades for several detectors and the online systems.
- -New Forward Interaction Trigger (FIT)
- -Integrate Online and Offline (O^2 project) \rightarrow data reconstruction online

Upgrade of the Inner Tracker

	ITS	ITS UPGRADE	
Number of layers	6 7		
Rapidity coverage	η <0.9	η <1.5	
Material budget/layer	1.1% X ₀	0.3-0.8% X ₀	
Spatial resolution	12 x 100 µm ² 35 x 20 µm ² 20 x 830 µm ²	5 x 5 µm²	
Max Pb-Pb readout rate	1 kHz	100 kHz	

- innermost layer is closer to the IP: from 39 mm \rightarrow 22 mm
- reduced material budget: ~0.3% X₀ for the 3 inner layers (0.8% X₀ for the other 4 layers)
- reduced pixel size:
 - from 50×425 $\mu m^2 \rightarrow \text{~}(\textbf{30×30} \ \mu m^2$)
- -max silicon thickness: 50 µm
- ALPIDE (ALice Plxel DEtector) chip → Monolithic Active Pixel Sensors (MAPS) in TowerJazz 0.18 µm CMOS technology.

-Better tracking efficiency and p_T resolution at low p_T

thanks to the higher resolution and to the additional layer

Faster readout

Accessible for maintenance during winter shutdowns

The ITSU building phase will start soon

The Muon spectrometer

- ALICE muon spectrometer is located in the forward region: -4< η <-2.5.
- The extrapolation of the muon tracks candidates to the interaction diamond is affected by the presence of the absorber.
- This has a negative effect on the reconstruction of the kinematics and on the possibility to separate prompt and displaced muons

The new Muon Forward Tracker (MFT)

INPC 2016 | Sep 12th, 2016 | M. Masera 19

The new Muon Forward Tracker (MFT)

The extrapolated muon tracks are matched with tracks reconstructed with the MFT

PHYSICS GOALS

Open Heavy Flavors

- -Charm measurement down to p_T =1 GeV/ c (single µ channel)
- -Beauty measurement down to $p_T=0$ (non prompt J/ ψ)

Prompt charmonium production

- -prompt/non prompt J/ ψ separation down to $p_T=0$
- $-\psi(2S)$ in central Pb-Pb collisions down to $p_T=0$

➡Low mass dimuons

improved mass resolution (low mass resonances)

Event plane measurement and azimuthal correlation at forward rapidity

ALI-PUB-93246

The new Muon Forward Tracker (MFT)

Time Projection Chamber: present limitations ALICI

gating grid of readout MWPCs closed to avoid ion feedback

- Limit space charge to tolerable level
- Effective dead time ~280 µs, maximum readout rate: 3.5 kHz

alternative: gating grid always open

- -Ion feedback ~10³ x primary ions generated in drift volume
- -Large space charge effects (of the order of electrical field)
 - Space point distortions (at 50 kHz) of order of 1 m not tolerable!!

TPC Upgrade

ALICE

TPC Upgrade: expected performance

Technical baseline choice:

- stack of 4 GEM foils
- Ion Back Flow < 1% at gain 2000</p>
- dE/dx resolution <12% for ⁵⁵Fe

Preproduction: after summer 2016

Tracking resolution preserved

- Slight deterioration when only TPC is used
- Correction for space-charge effects via ITS-TRD matching:
 - -successfully used in Run 2

Full recovery when tracks are matched with the ITS

ALICE Upgrade: the O² system

- The expected data rate for Pb-Pb collisions at 50 kHz is ~1.1 TB/s
- The TPC alone accounts for 1 TB/s
- The O² project aims to integrate in a single infrastructure the present DAQ, HLT and Offline (for the reconstruction part) systems

Detector	Average event size (MB)	Data rate for Pb- Pb @ 50 kHz (GB/s)	
TPC	20.7	1012	
ITS	0.8	40	
TRD	0.5	20	
MFT	0.2	10	
Others	0.3	12.2	
Total	22,5	1094,2	

- The data volume coming from the detectors must be substantially reduced before sending the data to the mass storage.
- Online processing is the only option
- The computing strategy must rely on a heterogeneous architecture to match the interaction rate:
 - »~250 FLP worker nodes (First Level Processors) equipped with FPGA
 - »~1500 EPN worker nodes (Event Processing Nodes) equipped with GPU
 - »yearly amount of data (2020, 2021): 54 PB

ALICE Upgrade: the O² system

- The expected data rate for Pb-Pb collisions at 50 kHz is ~1.1 TB/s
- The TPC alone accounts for 1 TB/s
- The O² project aims to integrate in a single infrastructure the present DAQ, HLT and Offline (for the reconstruction part) systems

- The data volume coming from the detectors must be substantially reduced before sending the data to the mass storage.
- Online processing is the only option
- The computing strategy must rely on a heterogeneous architecture to match the interaction rate:
 - »~250 FLP worker nodes (First Level Processors) equipped with FPGA
 - »~1500 EPN worker nodes (Event Processing Nodes) equipped with GPU »yearly amount of data (2020, 2021): 54 PB

ALICE

Online data volume reduction

- The impressive reduction factor that can be obtained for the TPC is based on:
 - zero suppression
 - clustering and compression
 - removal of clusters non associated to interesting particle tracks (e.g. very low momentum electrons)
 - data format optimization
- Largely based on the present High Level Trigger results

Still uncertainties for the ITS:

- » The contribution from noisy clusters is unknown: here a pessimistic estimate of a probability of 10⁻⁵ per pixel has been made
- » If full synchronous reconstruction will be feasible a higher reduction factor will be achieved (noise removal)

Detector	Data rate for Pb-Pb @ 50 kHz (GB/s)	Compressed data rate (GB/s)	Data reduction
ТРС	1012	50	20.2
ITS	40	26 (8)	1.5 (5)
TRD	20	3	6.7
MFT	10	5	2
Total	1082	84 (66)	12.9 (16.4)

Expected Physics Performance

examples

Pb-Pb @ sqrt(s) = 2.76 ATeV 2011-11-12 06:51:12 Fill : 2290 Run : 167693 Event : 0x3d94315a

INPC 2016 | Sep 12th, 2016 | M. Masera 27

Event: 0x3d94315a

$D^0 \rightarrow K^-\pi^+$

- ➡ Basic benchmark for all open charm studies in their hadronic decay channels.
- Run 1 results for R_{AA} : large systematic uncertainties at low p_T
- ➡With the upgrade
 - comparable efficiency for signal extraction
 - background rejection improved by a factor of 4-5 for p_T >2 GeV/c and almost by a factor of 10 for p_T <2 GeV/c</p>
 - -Expected significance for L_{int}=10 nb⁻¹ larger than 50 for 10% most central Pb-Pb collisions in the range 0< p_T <1 GeV/c</p>
 - important reduction of systematic uncertainties due to the easier signal extraction and to the direct Beauty feed-down corrections

Exclusive beauty reconstruction

 \rightarrow Access to beauty at low p_{T} will be achieved via

-inclusive channels:

- displaced J/ψ
- displaced D mesons
- muons/electrons from B semi-leptonic decays
- exclusive channels:
 - $B^{+} \rightarrow J/\psi (\rightarrow ee)K^{+}$

Exclusive reconstruction down to $p_T=0$

Exclusive beauty reconstruction

Access to beauty at low p_T will be achieved via

-inclusive channels:

- displaced J/ψ
- displaced D mesons
- muons/electrons from B semi-leptonic decays
- exclusive channels:
 - $\mathbf{B}^{+} \rightarrow \mathbf{D}^{0} (\rightarrow \mathbf{K} \pi) \pi^{+}$ Exclusive reconstruction down to $p_{T}=2$ GeV/c

This study requires the simulation of a very large Pb-Pb sample ~100M events (to have enough background statistics)

→ Driving motivation for the development of a fast MC tool, that reduces the simulation time by factor ~ 10^3

31

Exclusive beauty reconstruction

- Access to beauty at low p_T will be achieved via
 - -inclusive channels:
 - displaced J/ψ
 - displaced D mesons
 - muons/electrons from B semi-leptonic decays
 - exclusive channels:
 - $\mathbf{B}^{\dagger} \rightarrow \mathbf{D}^{0} (\rightarrow \mathbf{K} \pi) \pi^{\dagger}$ Exclusive reconstruction down to $p_{T}=2$ GeV/c

Heavy flavor baryons - In medium hadronization

- → Heavy Flavor baryons (Λ_c but also Λ_b) will be accessible in Pb-Pb collisions.
- Hints that charm could recombine in the QGP from LHC Run 1 data
 - e.g. reduced suppression of D_s interpreted ad in medium hadronization given the higher quark s abundance in QGP.
- In Run 3: precise measurements of HF mesons and baryons
 - $-\Lambda_c \rightarrow pK\pi$ is a very challenging measurement: ct=60 µm B.R. ~5%
 - discrimination among different models of hadronization by measuring baryon/ meson ratios

Charmonium and low mass dileptons in ALICE ALICE

Improved discrimination of prompt/displaced dileptons both in the central barrel (upgraded ITS) and in the forward region (thanks to the MFT)

Conclusions

- ➡ In the LHC Long Shutdown 2 (2018-19) ALICE will undergo a major upgrade:
 - tracking and vertexing precision will be significantly improved both at mid and forward rapidities thanks to a new Inner Tracking System and a new Muon Forward Tracker
 - readout rate at 50 kHz in Pb-Pb (50× increase w.r.t. the present value)
 - the online and offline systems will be unified and deeply reorganized (O^{⁻ project)}
- A comprehensive physics program for ALICE in the LHC Run 3 has been finalized in the last years, during the preparation of the Technical Design Reports.
- The R&D phase is ending in 2016 and the production/construction will be carried out in 2017/18
- The purpose of the upgrade is to carry out precision studies of observables extending the p_T reach as close as possible to zero. Main probes:
 - Heavy Flavors
 - dileptons
- A Forward Calorimeter with focus on saturation physics is presently under discussion

35

LHC expected schedule

LHC expected schedule

MAPS: Monolithic Active Pixel Sensors

MAPS attractive technology for ALICE due to:

- Reduction of material budget (sensor&readout integrated) 350 μ mightarrow50-100 μ m/layer

- Limited radiation tolerance and moderate readout time: still fitting for ALICE (700 krad foreseen for innermost layer)!

ALICE baseline: MAPS using CMOS 0.18 µm technology (TowerJazz)

Pixel pitch ~ 30 μm x 30 μm
High resistivity epitaxial layer (>1 kΩ)
PMOS transistor for readout on top of deep p-well
PMOS/NMOS in the same pixel cell
deep p-well junction reflects signal electrons

signal collected by the sensing diode only

Final version of MAPS chip (ALPIDE = ALICE Pixel Detector) July 2016 (after 3 prototype runs) \rightarrow start production end of the year 29 µm x 27 µm pixel pitch Power consumption: 40 mW/cm² Efficiency > 99% Noise probability: < 10⁻⁶

Gluon saturation with forward photons

two scenarios for forward γ production in p+A at LHC:

- normal nuclear effects linear evolution, shadowing
- saturation/CGC running coupling BK evolution

- strong suppression in direct γ R_{pA}
 - clean signal for isolated photons
- signals expected at forward η , low-intermediate p_T

Run : 167693 Event : 0x3d94315

FoCal

electromagnetic calorimeter for γ and π^0 measurement

preferred scenario: • at $z \approx 7m$ (outside magnet) $3.3 < \eta < 5.3$ (space to add hadr. calorimeter)

under internal discussion possible installation in LS3

- main challenge: separate γ/π^0 at high energy
- need small Molière radius, high-granularity read-out
 - Si-W calorimeter, granularity $\approx 1 \text{ mm}^2$

Run : 167693 Event : 0x3d94315a

FoCal: R&D

main challenge: separate γ/π^0 at high energy ٠

Counts

80

 $\sigma_{x} = 30.6 \pm 1.0 \ \mu m$

- need small Molière radius, ٠ high-granularity read-out
 - Si-W calorimeter, granularity $\approx 1 \text{ mm2}$

prototype of Si/W calorimeter with CMOS pixel sensors (synergy with ITS) collaborating in CALICE

30µm pixel pitch very small Moliere radius $R_M \approx 11 mm$ can provide unprecedented two-shower separation

shower position resolution

lateral profiles of electron showers

40