ηN interactions in the nuclear medium and η -nuclear bound states

J. Mareš

Nuclear Physics Institute, Rez/Prague

Jerusalem-Prague Collaboration: N. Barnea, A. Cieplý, E. Friedman, A. Gal

PLB 725 (2013) 334; NPA 925 (2014) 126; PLB 747 (2015) 345

International Nuclear Physics Conference Adelaide Convention Centre, Australia 11-16 September 2016

η nuclei - status

- Haider, Liu (PLB 172 (1986) 257, PRC 34 (1986) 1845) moderate attractive ηN interaction with scattering length $a_{\eta N} \sim 0.27 + i0.22$ fm $\Rightarrow \exists$ of η nuclear bound states (starting ¹²C)
- Numerous studies since then yielding Rea_{ηN} from 0.2 fm to 1 fm chiral coupled channel models Rea_{ηN} < 0.3 fm;
 K matrix methods fitting πN and γN reaction data in the N*(1535) resonance region Rea_{ηN} ~ 1 fm → bound states already in He isotopes
- Strong final-state interaction have been noted in p- and d-initiated η production (COSY-ANKE, COSY-GEM, LNS-SPES2,3,4)
- ${}^{25}_{\eta}Mg$? (COSY-GEM, PRC 79 (2009) 012201(R)) $p + {}^{27}$ Al \rightarrow^{25}_{η} Mg $+ {}^{3}$ He; ${}^{25}_{\eta}$ Mg $\rightarrow (\pi^- + p) + X$ $B_{\eta} = 13.1 \pm 1.6$ MeV and $\Gamma_{\eta} = 10.2 \pm 3.0$ MeV.
- But NO decisive experimental evidence so far. (negative results for ³_ηHe (photoproduction on ³He - MAMI, PLB 709 (2012) 21.) and for ⁴ηHe (dd →³Hepπ⁻ - WASA@COSY PRC 87 (2013)035204.)

ηN interactions

- chiral SU(3)_L ×SU(3)_R meson-baryon effective Lagrangian for $\{\pi, K, \eta\} + \{N, \Lambda, \Sigma, \Xi\}$
- \exists resonances $\Rightarrow \chi \mathsf{PT}$ not applicable \rightarrow
- nonperturbative coupled-channel resummation techniques

$$T_{ij} = V_{ij} + V_{ik}G_{kl}T_{lj}, V_{ij}$$
 derived from \mathcal{L}_{χ}

Effective potentials are constructed to match the chiral meson-baryon amlitudes (up to NLO order)

- Channels involved: πΝ, ηΝ, ΚΛ, ΚΣ
- Model parameters fixed by fitting low-energy meson-nucleon data: $\pi N \rightarrow \eta N$ production X-section: πN amplitudes from SAID database:

 $(S_{11} \text{ and } S_{31} \text{ partial waves})$

ηN scattering amplitudes

- ηN amplitudes for various models differ considerably
- Strong energy dependence of the scattering amplitudes !

line	$a_{\eta N}$ [fm]	model
dotted	0.46+i0.24	N. Kaiser, P.B. Siegel, W. Weise, PLB 362 (1995) 23
short-dashed	0.26+i0.25	T. Inoue, E. Oset, NPA 710 (2002) 354 (GR)
dot-dashed	0.96+i0.26	A.M. Green, S. Wycech, PRC 71 (2005) 014001 (GW)
long-dashed	0.38+i0.20	M. Mai, P.C. Bruns, UG. Meißner, PRD 86 (2012) 094033 (M2)
full	0.67+i0.20	A. Cieply, J. Smejkal, Nucl. Phys. A 919 (2013) 334 (CS)

η in few-body systems

Variational calculation in hypersherical basis: N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345

2-body interactions

- NN: Argonne AV4' potential, Minnesota MN (central) potential
- ηN: complex energy-dependent local potential derived from the full chiral coupled-channels model:

$$v_{\eta N}(E, r) = -\frac{4\pi}{2\mu_{\eta N}} b(E) \rho_{\Lambda}(r),$$

where $E = \sqrt{s} - \sqrt{s_{\text{th}}}, \quad \rho_{\Lambda}(r) = (\frac{\Lambda}{2\sqrt{\pi}})^3 exp\left(-\frac{\Lambda^2 r^2}{4}\right)$

b(E) fitted to phase shifts δ derived from $F_{\eta N}(E)$ in GW and CS models

η in few-body systems

• Energy dependence of b(E)

 $F_{\eta N}(E)$ generated from $v_{\eta N}(E)$ (GW), compared with the amplitude generated from $v_{\eta N}(E = 0)$ (gw).

η in few-body systems

Energy dependence of $v_{\eta N}(\sqrt{s})$

• A nucleons $+ \eta$ meson:

$$m{s} = (\sqrt{s_{ ext{th}}} - B_\eta - B_N)^2 - (ec{p_\eta} + ec{p_N})^2 \le s_{ ext{th}}$$

where $\sqrt{s_{ ext{th}}} = m_N + m_\eta$

near threshold approximated by:

$$\begin{split} \sqrt{s} &= \sqrt{s_{\text{th}}} + \delta\sqrt{s}, \quad \delta\sqrt{s} < 0! \\ \langle \delta\sqrt{s} \rangle &= -\frac{B}{A} - \frac{A-1}{A}B_{\eta} - \xi_N \frac{A-1}{A} \langle T_{N:N} \rangle - \xi_\eta \left(\frac{A-1}{A}\right)^2 \langle T_{\eta} \rangle, \\ \text{where } B &= \text{total binding energy, } \xi_{N(\eta)} = m_{N(\eta)} / (m_N + m_\eta), \\ T_{\eta} &= \eta \text{ kin. energy, } T_{N:N} = \text{pairwise } NN \text{ kin. energy} \end{split}$$

• $\langle \delta \sqrt{s} \rangle \Rightarrow$ selfconsistency

• Energy dependence \Rightarrow selfconsistency

The ηNNN g.s. energy $E_{g.s.}$ (solid curves) + $\delta \sqrt{s}$ (dashed curves)

- Conversion widths Γ of η nuclear few-body systems perturbative estimate: $\Gamma = -2\langle \Psi_{gs} | \text{Im} V_{\eta N} | \Psi_{gs} \rangle$
- $\eta NN NO$ bound state
- ηNNN bound state ?

NN int.	E(NNN)	$E_{ m gs}^{ m no~sc}$	$E_{\eta}^{\text{no sc}}$	$\delta\sqrt{s_{ m sc}}$	$E_{ m gs}^{ m sc}$	$E_{\eta}^{ m sc}$	$\Gamma_{ m gs}^{ m sc}$
MN	-8.38	-11.26	2.88	-13.52	-9.33	-0.95	6.76
AV4'	-8.99	-11.33	2.34	-15.83	-9.03	-0.04	7.88

A. Cieply, E. Friedman, A. Gal, J. Mares, PLB 725 (2013) 334, NPA 925 (2014) 126

• K.-G. equation:

$$\left[\omega_\eta^2+ec
abla^2-m_\eta^2-\Pi_\eta(\omega_\eta,
ho)
ight]\phi_\eta=0$$

complex energy $\omega_\eta = m_\eta - B_\eta - \mathrm{i} \Gamma_\eta/2$

•
$$\Pi_{\eta}(\omega_{\eta},\rho) = 2\omega_{\eta}V_{\eta} = -4\pi \frac{\sqrt{s}}{E_{N}}F_{\eta N}(\sqrt{s},\rho)\rho$$

• η in a nucleus \Rightarrow polarized (compressed) $\rho \longrightarrow \Pi_{\eta}(\rho)$ \Rightarrow selfconsistent solution Selfenergy operator

$$\Pi_{\eta}(\omega_{\eta}) = 2\,\omega_{\eta}V_{\eta} = -4\pi \frac{\sqrt{s}}{E_{N}}F_{\eta N}(\sqrt{s},\rho)\,\rho$$

- $F_{\eta N} = \eta N$ scattering amplitude with two-body argument: $\sqrt{s} (s = (\omega_{\eta} + E_N)^2 - (\vec{p}_{\eta} + \vec{p}_N)^2)$
- ηN c.m. frame $\rightarrow \eta$ -nucleus c.m. frame $\Rightarrow \vec{p}_{\eta} + \vec{p}_{N} \neq 0$ $\Rightarrow \sqrt{s} \approx m_{\eta} + m_{N} - B_{\eta} - B_{N} - \xi_{N} \frac{p_{N}^{2}}{2m_{N}} - \xi_{\eta} \frac{p_{\eta}^{2}}{2m_{\eta}} = E_{\text{th}} + \delta \sqrt{s},$ $\delta \sqrt{s} = B_{N} \frac{\rho}{\bar{\rho}} - \xi_{N} B_{\eta} \frac{\rho}{\rho_{0}} - \xi_{N} T_{N} (\frac{\rho}{\rho_{0}})^{2/3} + \xi_{\eta} \text{Re} V_{\eta} (\sqrt{s}, \rho)$
- ρ = nucl. medium density (RMF calculations)
- $V_\eta, B_\eta \Rightarrow$ self-consistent solution

Free space amplitudes \rightarrow in-medium amplitudes

• WRW method - T. Wass, M. Rho, W. Weise, NPA 617 (1997) 449.

$$F_{\eta N}(\sqrt{s},
ho) = rac{F_{\eta N}(\sqrt{s})}{1+\xi(
ho)(\sqrt{s}/E_N)F_{\eta N}(\sqrt{s})
ho} \; ,$$

$$\xi(\rho) = \frac{9\pi}{4\rho_f^2} I(\kappa), \qquad I(\kappa) = 4 \int_0^\infty \frac{dt}{t} \exp(iqt) j_1^2(t), \qquad \kappa = \frac{1}{\rho_f} \sqrt{2m_\eta (B_\eta + i\Gamma/2)}.$$

Chiral coupled-channels model - A. Cieply, J. Smejkal, NPA 919 (2013) 334.
 multi-channel L.-Sch. equation:

$$F = V + VGF, \quad F, V \text{ in separable form,}$$

$$G_n(\sqrt{s}; \rho) = -4\pi \int_{\Omega_n(\rho)} \frac{d^3\vec{p}}{(2\pi)^3} \frac{g_n^2(p)}{k_n^2 - p^2 - \prod_n(\sqrt{s}, \vec{p}; \rho) + i0}$$

 $\Omega_n(\rho) \rightarrow \text{intermediate } N \text{ energy is above Fermi level (Pauli blocking)}$ $\Pi \rightarrow \text{hadron self-energies in } G \ (+SE \text{ option})$

 \Rightarrow self-consistency

• Energy dependence of $f_{\eta N}(\sqrt{s})$

chiral CS model (A. Cieply, J. Smejkal, Nucl. Phys. A 919 (2013) 334)

dotted curve: free-space, dot-dashed: Pauli blocked, full: Pauli blocked + hadron selfenergies

 Nuclear medium reduces the ηN attraction at threshold, the amplitude becomes smaller when going subthreshold

η nuclear states

Energy dependence of $V_{\eta}(\sqrt{s}) \leftarrow$ due to $N^*(1535)$

• In-medium (subthreshold) energy shift:

 $\delta\sqrt{s} = -B_N \frac{\rho}{\bar{\rho}} - \xi_N B_\eta \frac{\rho}{\rho_0} - \xi_N T_N (\frac{\rho}{\rho_0})^{2/3} + \xi_\eta \operatorname{Re} V_\eta(\sqrt{s},\rho)$

• $B_{\eta}, V_{\eta}, \rho \Rightarrow$ selfconsistent solution \rightarrow

40 - 60 MeV energy shift at ρ_0 – larger than shift by B_η (GR) or by 30 MeV (Haider, Liu)

η nuclear states

 Sensitivity to the energy shift: selfconsistent δ√s reduces both 1s B_n and Γ_n

• GR widths too large to resolve η bound states !

• Model dependence:

• Larger Re $a_{\eta N}$ gives larger B_{η} vs. no relation between Im $a_{\eta N}$ and Γ_{η}

• Predictions of GW and CS models:

all states in selected nuclei are shown; both models give small widths ($\Gamma_\eta < 5~{\rm MeV})$

- Large energy shift and rapid decrease of the ηN amplitudes lead to relatively small binding energies and widths of the calculated η nuclear bound states
- CS and GW models predict η nuclear states with small widths (< 5 MeV) \rightarrow this might encourage further attempts to produce and identify η nuclear bound states.
- additional width contribution not considered in this work due to $\eta N \rightarrow \pi \pi N$ and $\eta NN \rightarrow NN \Rightarrow$ estimated to add few MeV
- Subthreshold behavior of $F_{\eta N}$ is crucial to decide whether η nuclear states exist, in which nuclei, and if their widths are small enough to be resolved in experiment.