Collinear Laser Spectroscopy for Nuclear Structure Studies at NSCL

P.F. Mantica and K. Minamisono

15 September 2016
The nuclear radius of ^{11}Li is comparable to that of ^{208}Pb, due to the loosely-bound nature of the valence neutrons ($S_{2n} \sim 350$ keV).

Near the limits of nuclear binding, the nucleus radius deviates dramatically from $R = \text{const } A^{(1/3)}$.
Nuclear Charge Radii and Shell Structure around N=20

- Nuclear charge radii show discontinuity (kink) at known neutron shell closures
- No kink observed at N=20 for elements Ar, K, Ca
- What is physics underlying the trend in charge radii across N=20?
 - Measure hyperfine spectra of beta-unstable, neutron-deficient K isotopes and deduce charge radii
Collinear Laser Spectroscopy with BECOLA

- BECOLA operational since 2013
- Online commissioning completed in 2014
- The Penning Ionization Gauge (PIG) off-line ion source commissioned in 2015

BECOLA: K. Minamisono et al., NIMA 709, 85 (2013); D. Rossi et al., RSI 85, 093503 (2014).
Charge Exchange Cell: A. Klose et al., NIMA 678, 114 (2012); A. Klose et al., PRA 88, 042701 (2013).
PIG ion source: C. A. Ryder et al., SAB 113, 16 (2015).
BECOLA Laser Systems

Millennia Pro Pump Laser
10W @ 532nm

Ti:Sapph Laser
~2W, (700-1000nm)

Millennia eV Pump Laser
20W @ 532nm

Matisse Dye Laser
~3W, (550-750nm)

Frequency Doubler ➔ (275-500nm)
~10% of input power (need ~300µW)

Optical fiber

Reference Cavities
Online Commissioning with ^{37}K

- Successful commissioning with radioactive ^{37}K beam ($T_{1/2} = 1.2$ s)
- Measurements of hyperfine structure using resonant photon detection in coincidence with bunched beam

^{39}K I: $4p \ ^2P_{1/2} \rightarrow 4s \ ^2S_{1/2}$

- Background suppression by 50,000
- Measurements possible with beam intensity of $\sim 10^3$ atoms/s for “red”-light detection

D. M. Rossi et al., RSI 85, 093503 (2014)
K. Minamisono et al., HI 230, 57 (2014)
Laser Spectroscopy of Radioactive 36,37K

Optically pumped beam implanted in KBr single crystal

\[\frac{dN_i}{dt} = \sum_j P_{ij}^{\uparrow\downarrow}(\nu)(M_j - N_i) + \sum_j P_{ij}^{\downarrow\uparrow}(M_j) \]

\[\frac{dM_j}{dt} = \sum_i P_{ij}^{\uparrow\downarrow}(\nu)(-M_j + N_i) - \sum_i P_{ij}^{\downarrow\uparrow}(M_j) \]
Discontinuity Absent at N=20 for K Isotopes

- The characteristic discontinuities in the chain of charge radii, which is well established for nuclei at shell closures, is not apparent at $N = 20$ for the potassium isotopes.

- Balance of the monopole and quadrupole proton-core polarizations above and below $N = 20$, respectively, causes the anomalous behavior.

D. M. Rossi et al., PRC 92, 014305 (2015)

P. Mantica, INPC 2016, Slide 8
Nuclear charge radii show discontinuity (kink) at known neutron shell closures.

Well-established kink observed at N=28 for elements Ar (Z=18) to Mn (Z=25).

What about heavier nuclei, is there a change with transition to systems where N~Z?

- Measure hyperfine spectra of beta-unstable, neutron-deficient Fe isotopes and deduce charge radii.
Laser Spectroscopy of Radioactive $^{52,53}\text{Fe}$

Atomic transition:
$3d^64s4p\,^5F_5\,(26874.550\,\text{cm}^{-1})$

$3d^64s^2\,^5D_4\,(0.000\,\text{cm}^{-1})$

Rate after charge exchange:
^{52}Fe: 500 atoms/s
^{53}Fe: 1,500 atoms/s

Non-resonant charge exchange with Na vapor:
Only a few % population of ground electronic state

C. A. Ryder et al., SAB 113, 16 (2015).
- Charge radii measurements of Fe across the N=28 shell closure
 - Expected “kink” observed at N=28
 - Structure typical of a shell closure
- Nuclear density functional theory (DFT) using the UNEDF1 Skyrme energy density functional (EDF) [blue curve]
 - Reproduces the general trend of the charge radii
 - Overestimate the magnitude of the charge radius
 - No strong odd-even staggering of charge radii along Fe isotopic chain
BECOLA is a CLS facility at NSCL/FRIB
- electromagnetic moments and charge radii
- transition metals
- neutron-deficient isotopes

Shell structure around N = 20
- Disappearance of shell signature at N=20
- Deduced charge radii of neutron-deficient 36,37K
 - No “kink” at N=20
 - Balance between monopole and quadrupole
- Next up, neutron-deficient Ca isotopes
 - Approved by NSCL PAC 40

Shell structure around N = 28
- Strong evidence for shell closure signature at N=28
 - Neutron-rich Ar (Z=18) to Mn (Z=25)
- Deduced charge radii of neutron-deficient 52,53Fe
 - “Kink” persists at N=28 for Fe (Z=26)

Work supported in part by:
NSF PHY-11-02511
DOE NNSA DE-NA00029
BECOLA Collaborators

- **e1101 \((^{36,37}K)/e14006 \((^{52,53}Fe)\)**

- **E14006 \((^{52,53}Fe)\)**
 - D.M. Rossi, W. Noertershaeuser, B. Maass (TU Darmstadt)
 - M. Pearson (TRIUMF)
 - Y. Liu (ORNL)
 - A. Klose (Augustana U)
 - P. Mueller (ANL)

- **Atomic factor calculations**
 - S. Fritzsche, R. Beerwerth (HI Jena)