Development of Ring-Imaging Cherenkov Counter for Heavy lons

Masahiro Machida Tokyo University of Science New Facilities and Instrumentation INPC 2016

Tokyo University of Science

M. Machida, J. Chiba, D. Nishimura, H. Oikawa, H. Hosokawa, J. Onishi, M. Tada, R. Ishii, T. Tahara

Osaka University

M. Fukuda, M. Mihara, M. Tanaka, H. Du, K. Onishi, R. Yanagihara, T, Hori, S. Nakamura

Niigata University

T. Otsubo, T. Izumikawa, M. Takechi, E. Miyata, A. Homma, A. Ikeda, N. Kanda

Saitama University

T. Suzuki, T. Yamaguchi, I. Kato, N. Tadano, K. Wakayama

Tsukuba University

T. Moriguchi, M. Amano

National Institute of Radiological Sciences

A. Kitagawa, S. Fukuda, S. Sato

Introduction

Experimental Methods

Results & Discussion

Summary

Introduction

RICH: Ring-Imaging CHerenkov counter

n: Refractive index

Velocity detector

Background of RICHes

Photon detector: 144-ch HAPD 200 mm Examples The First RICH tested at CERN Performed with the photo-ionization process (J. Séguinot and T. Ypsilantis, NIM 142, 377 (1977).) Charged particle • The Aerogel RICH Counter in the KEK Belle II experiment Radiator: Silica aerogel To separate **K** from $\mathbf{\pi}$ and to provide discrimination between $\mathbf{\pi}$, $\boldsymbol{\mu}$ and \mathbf{e}^- **Aerogel RICH Counter** (S. Iwata, et al., PTEP 033H01 (2016).) 120 mm Cherenkov **Radiator:** Liquid C₆F₁₄ light cone Silicon **Photon detector:** Gas detector with TMAE (tetrakis ethylene) Fragment array Radiator $\Delta\beta(\sigma)/\beta = 0.077\%$ with $\beta = 0.8269$ (¹²⁹Xe) was achieved. Photon detector (K. Zeitelhack, et al., NIM A 333, 458 (1993).) VUV-Mirror **RICH of GSI (1993)**

RICHes have been mainly used for particle physics experiments. GSI developed a RICH for heavy ions in 1993.

Motivation and Advantages of a RICH for Heavy ions

The conventional method: Time-of-flight (TOF) measurement

- TOF measurement with high accuracy requires very long flight paths.
- It requires **30 m** to obtain velocity resolution for **5.00** separation of mass number A = 100 with detectors of $\sigma = 100$ ps. (with $\beta = 0.7$)

Aims of the experiment

1. To develop HI-RICH which has sufficient performance for "particle identification" of the secondary beam

2. To understand tendencies of velocity resolution and detection efficiency

Velocity resolution $\Delta\beta(\sigma)/\beta = 0.075\%$ with $\beta = 0.71$

5.0 σ separation of mass number A = 132

Experimental Methods

Accelerator and Beam Line

• 800 MeV/u (Max.)

Primary Seconda

M. Kanazawa et al., NIM A 746, 393c (2004).

S. Yamaki et al., NIM B 317, 774 (2013).

Primary Beam: ¹³²Xe⁵⁴⁺ 420 MeV/u

Secondary Beam: ¹¹³Sn⁵⁰⁺ 390 MeV/u (typical nuclide)

Experimental Setup (Unit: mm)

HI-RICH

8×8 Multi-anode PMT × 6 → 384 channels (manufactured by **HAMAMATSU**)

F3PL: Plastic Scintillator (**common trigger**)

IC: Ion Chamber (**ΔE detector**)

PPAC: Parallel Plate Avalanche Counter (**position detector**)

PMTs' Pixels and Quantum Efficiency (QE)

Radiators, Filters and Circuits of HI-RICH

Radiators

- Synthetic quartz (SiO₂) (n = 1.48)
 - ▶ 25 mm × 25 mm × 0.48 mmt
 - ▶ 25 mm × 25 mm × 0.95 mmt
- **BK7** (n = 1.54)
 - ▶ 20 mm × 20 mm × 1.06 mmt

Filters (Edmund UV U-360)

- U360 Band Pass Filter
 - The center of wavelength: 360 nm
 - Peak transmission: 70%
 - Thickness: 2.5 mmt

Circuit Diagram

Results & Discussion

Results

Results of the **primary beam** with a radiator (**SiO**₂) thickness of **0.48 mmt** are shown below as an example.

Simulation

Considered fluctuation:

1. Energy loss of beams in a radiator 2. Angles of emitted photons by dispersion of 3. Positions of emitted photons in a radiator

This process was repeated with all photoelectrons.

fwavelength	The number of photoelectrons wer considered as Poisson distribution.

If a photoelectron reached a position of a PMT channel, the channel was considered to be hit.

Multiplicity

= The number of hit channels in an event.

A comparison of multiplicity dependence of velocity resolution between sim. and exp. of the primary beam.

Some events were selected by each multiplicity gate.

Primary Beam (¹³²Xe⁵⁴⁺ 420 MeV/u)

(Simulated Detection efficiency $\varepsilon = 100\%$)

	0.48 mmt	0.95 mmt
Δβ(σ)/β (%)	0.0547(3)	0.0497(3)
ε(%)	99.39(6)	99.86(3)

 $N_{\rm p.e.} = N_{\rm photon} \times \varepsilon_{\rm filter} \times {\rm QE}$ $N_{p.e.}$ = the number of photoelectrons $N_{\rm photon}$ = the number of photons $\varepsilon_{\text{filter}}$ = transmission of the filter QE = quantum efficiency

 $(N_{p.e.} \text{ (with 0.95 mmt)} = 1400 \leftarrow \text{theory})$

Primary Beam (¹³²Xe⁵⁴⁺ 420 MeV/u)

(Simulated Detection efficiency $\varepsilon = 100\%$)

	0.48 mmt	0.95 mmt
Δβ(σ)/β (%)	0.0547(3)	0.0497(3)
ε(%)	99.39(6)	99.86(3)

 $N_{\rm p.e.} = N_{\rm photon} \times \varepsilon_{\rm filter} \times {\rm QE}$ $N_{p.e.}$ = the number of photoelectrons $N_{\rm photon}$ = the number of photons $\varepsilon_{\text{filter}}$ = transmission of the filter QE = quantum efficiency

 $(N_{p.e.} \text{ (with 0.95 mmt)} = 1400 \leftarrow \text{theory})$

Primary Beam (¹³²Xe⁵⁴⁺ 420 MeV/u)

	0.48 mmt	0.95 mmt
Δβ(σ)/β (%)	0.0547(3)	0.0497(3)
E (%)	99.39(6)	99.86(3)

 $N_{\rm p.e.} = N_{\rm photon} \times \varepsilon_{\rm filter} \times {\rm QE}$ $N_{p.e.}$ = the number of photoelectrons $N_{\rm photon}$ = the number of photons $\varepsilon_{\text{filter}}$ = transmission of the filter QE = quantum efficiency

 $(N_{p.e.} \text{ (with 0.95 mmt)} = 1400 \leftarrow \text{theory})$

$$\frac{\mathrm{d}N_{\mathrm{photon}}}{\mathrm{d}\lambda\mathrm{d}x}\propto\frac{Z^{2}\,\mathrm{s}}{}$$

Z = atomic number

$$\Theta_{\rm C}$$
 = radiation ang

$\Delta\beta(\sigma)/\beta = 0.050\%$ is achieved! ($\beta = 0.71$)

equivalent

60 meters TOF with $\sigma = 100$ ps

Secondary Beam (¹³²Xe⁵⁴⁺ 420 MeV/u + Be target 2mm)

Radiator: BK7 1.06 mmt

¹¹³Sn: $\Delta\beta(\sigma)/\beta = 0.086(1)\%$ **5.3** σ separation of mass number A = 113

Secondary Beam (¹³²Xe⁵⁴⁺ 420 MeV/u + Be target 2mm)

Experiment

- The experiment was Performed at **NIRS**.
- Primary beam was **420 MeV/u** ¹³²**Xe**⁵⁴⁺ beam.
- In the secondary beam, the target of material was 2 mm-thick Be.

Results and Discussion

- Multiplicity dependence of velocity resolution is well reproduced by the simulation.
- In the primary beam, $\Delta\beta(\sigma)/\beta = 0.050\%$ and $\epsilon = 99.9\%$ are achieved with $\beta = 0.71$ for primary beam.
- In the secondary beam, particle identification was successfully performed with HI-RICH and Ion Chamber.

