

Guo-Liang Ma

This work is in collaboration with W.T. Deng(HUST), X.G. Huang(FDU), Y. G. Ma(SINAP), Q.Y. Shou(CCNU), and B. Zhang(ASU).

Outline

- Motivation
- The AMPT model and its results
- Predictions on CME in isobar collisions
- Summary

Strong B field in HIC

The B field at the colliding time, t = 0. Biot-Savart law

$$-eB_y \sim 2 \times \gamma \frac{e^2}{4\pi} Z v_z \left(\frac{2}{b}\right)^2 \approx 40m_\pi^2 \sim 10^{19} \text{Gauss}$$

The Earths magnetic field	0.6 Gauss	
A common, hand-held magnet	100 Gauss	
The strongest steady magnetic fields achieved so far in the laboratory	4.5 x 10 ⁵ Gauss	
The strongest man-made fields ever achieved, if only briefly	10 ⁷ Gauss	
Typical surface, polar magnetic fields of radio pulsars	10 ¹³ Gauss	
Surface field of Magnetars	10 ¹⁵ Gauss	
http://solomon.as.utexas.edu/~duncan/magnetar.html		

Chiral Magnetic Effect

•CME: Initial fluctuations of topological charge in QCD vacuum \rightarrow P and CP odd metastable domains \rightarrow Charge separation in the direction of magnetic field

•CME indicates that parity is locally violated in strong interactions, which shows us the vacuum nature and QCD electromagnetics.

CME exp. probe: charge azimuthal correlator

•The STAR data are consistent with the CME expectation. \rightarrow Charges are distributed asymmetrically w.r.t reaction plane, i.e. dipole charge separation.

5

Can CME signal survive from final interactions?

The lifetime of B field is short. →The CME is an initial effect.
Final state interaction effects on the CME is important.

A multiphase transport (AMPT) model

•Only resonance decays are employed to ensure charge conservation for now.

AMPT model with CME-like charge separation

•We include initial dipole charge separation mechanism into AMPT model.

We switch the p_y values of a percentage of the downward moving u quarks with those of the upward moving u-bar quarks, and likewise for d-bar and d quarks, where the percentage is a relative ratio with respect to the total number of quarks.

•We focus on final state effects on the charge separation, including parton cascade, hadronization, resonance decays after \vec{B} and \vec{E} vanish quickly.

AMPT results on $<\cos(\varphi_{\alpha}+\varphi_{\beta})>$ in Au+Au

•An initial charge separation $\sim 10\%$ can describe same-charge data in the presence of strong final state interactions.

- But ~10% only can describe opposite-charge correlation for 60-70%.
- •From a percentage of charge separation of 10% in the beginning \rightarrow 1-2% percentage at the end.

CME vs trans. mom. conservation

• The AMPT result without CME is very close to the expectation of trans. mom. conservation [dashed: $<\cos(\varphi_{\alpha}+\varphi_{\beta})>=-v_2/N$].

• TMC can partly account for data, and an initial 10% dipole charge separation are needed.=> CME+TMC (+LCC)~ experimental data

INDO

isobar collisions : a new probe to test CME

—⁹⁶₄₀Zirconium vs ⁹⁶₄₄Ruthenium

Isobars are atoms (nuclides) of different chemical elements that have the same number of nucleons.

	⁹⁶ 44Ru+ ⁹⁶ 44Ru	VS	⁹⁶ 40Zr+ ⁹⁶ 40Zr
Flow		~	
CME		>	
CMW		>	

•RHIC plans to collide isobars (96Zr+96Zr and 96Ru+96Ru) at 200 GeV in Run-18 (2017-2018).

b-dependent Magnetic field

- b dependence of averaged <B_y> for Ru+Ru and Zr+Zr, and other systems.
- $\langle B_y \rangle$ (Ru+Ru) is larger than $\langle B_y \rangle$ (Zr+Zr) by 10% at large b.

INDC

b-dependent initial charge sep. percent

 $f\% = (N^+_{upward} - N^+_{downward})/(N^+_{upward} + N^+_{downward}) \sim J\pi R^2/N_{mult} \sim A^{-4/3}B_y$

• We apply $f^{-1146.1A^{-4/3}B_y(b)}$ to introduce the initial charge separation into Ru+Ru and Zr+Zr, by fitting the STAR data of Au+Au and Cu+Cu.

AMPT results on $\langle \cos(\phi a + \phi \beta - 2\psi 2) \rangle$ in isobar collisions

- If CME, a magnitude ordering that Au+Au < Zr+Zr < Ru+Ru < Cu+Cu.
- The CME difference due to different B fields between Zr+Zr and Ru+Ru can be seen, even with considering FSI effects.

Summary

• The initial CME results from QCD vacuum fluctuations+large B field.

• Final state interactions reduce the CME signal, so the percentage of initial CME charge separation should be larger than that without FSI.

• Isobaric collisions will be a good test to directly see CME difference due to different B fields.

Thanks for your attention!

 $<\cos(\varphi_{\alpha}+\varphi_{\beta})>$ from AMPT with local CME

- •A domain-based charge separation better describe the STAR data.
- The domain rate is consistent with the charge separation percentage in the global case.

Final state effects on $<\cos(\varphi_{\alpha}+\varphi_{\beta})>$

- Parton cascade reduces charge separation significantly.
- •Coalescence recovers some charge separation in part because it reduces the number of particles after combining quarks into hadrons.
- •Resonance decays reduce charge separation, where local charge conservation washes out the magnitude of opposite-charge correlation.

Topological structure of QCD vacuum

