

International Nuclear Physics Conference Adelaide Convention Centre, Australia 11-16 September 2016

Collinear resonance ionization spectroscopy: From laser spectroscopy to isomer selection

Kara M. Lynch **Research Fellow** CERN

Introduction

- The CRIS experiment is located at the ISOLDE facility, CERN
- Laser spectroscopy: spin and moments of parent nucleus
- **Decay spectroscopy**: level scheme of daughter nucleus

Introduction

- The CRIS experiment is located at the ISOLDE facility, CERN
- Laser spectroscopy: spin and moments of parent nucleus
- Decay spectroscopy: level scheme of daughter nucleus

- Collinear resonance ionization spectroscopy (CRIS)
- The CRIS beam line at ISOLDE
- The decay spectroscopy station
- Recent results from CRIS experiments
- Studying neutron-deficient francium
- Studying gallium, copper and radium

Summary

K.T. Flanagan *et al*. CERN-INTC-2008-010 **INTC-P-240** CERN, Geneva (2008) T.J. Procter *et al.* J. Phys.: Conf. Ser. **381** 1 012070 (2012)

The resolution of collinear spectroscopy and the sensitivity of ion detection

Collinear resonance ionization spectroscopy

Laser spectroscopy

- Probe the hyperfine structure of the energy levels of the electron
- Scan the laser frequency of the resonant transition

Nuclear properties extracted with model-independence:

Change in mean square charge radii $\delta \langle r^2
angle^{A,A'}$

Magnetic dipole moment μ_I

Electric quadrupole moment Q_S

Resonance ionization spectroscopy

- Resonant excitation is followed by an ionization step into the continuum
- When the laser frequency is on resonance with a hyperfine transition, the isotope is resonantly ionized
- Resonance ionization selects the isotope of interest
- Using an isotope's hyperfine structure as an atomic fingerprint

$$S = \left(\frac{\Delta \omega_{g,m}}{\Gamma}\right)^2 = \prod S_r$$

The higher the number of excitation steps, the greater the selectivity

The CRIS beam line at ISOLDE

The ISOLDE Facility

Radioactive isotopes are created and delivered to the CRIS beam line by:
 Proton-induced spallation/fission/fragmentation of 1.4 GeV protons impinged upon a thick target
 Ionization of radioactive products via surface, laser or plasma ionization process
 Mass separation with HRS
 Cooling and bunching in ISCOOL at 30 keV
 Transmission through CAo to CRIS

The CRIS technique

- linewidth of the hyperfine transition (GHz to MHz)

The CRIS technique

Collinear resonance ionization spectroscopy

- Sensitivity of technique comes from:
 - Detection of resonant ions
 - Efficient laser ionization
- Almost background-free detection

Laser-assisted nuclear decay spectroscopy

- Implantation of the resonant ions in a carbon foil allows their radioactive decay to be measured
- Provides additional information on the isotope (or isomer) under investigation

The Decay Spectroscopy Station (DSS)

M.M. Rajabali *et al.*, NIM A **707** 35 (2013) **12** K.M. Lynch *et al.*, J. Phys.: Conf. Ser. **381** 1 012128 (2012)

On-axis PIPS detector mount

On-axis APIPS detector mount

Carbon foils

CRIS laser laboratory

- Located in next to ISOLDE facility in new building
- Fibre-couple or mirror-couple light downstairs to the beam line
- Installation of new laser systems to increase the available wavelengths for RIS schemes
- M₂ Ti:Sa laser and frequency-doubling cavity
- Matisse dye laser and frequency-doubling cavity
- Industrial 10 kHz Nd:YAG Lee laser
- 2Ti:Sa cavities (Mainz) and injection-seeded Ti:Sa system (Jyväskylä)
- 200 Hz Nd:YAG Litron laser
- Spectron pulsed-dye laser

Hyperfine-structure measurements of neutron deficient francium

From theory to practice

199192

CRIS timeline

- 2008: Proposal for CRIS submitted to ISOLDE and n-ToF committee (INTC)
- 2010: CRIS beam line constructed and installed at ISOLDE
- 2011: First radioactive beam through CRIS
- 2012: Collinear resonance ionization spectroscopy (low resolution) of Fr
- Laser-assisted nuclear decay spectroscopy of 202,204Fr
- 2013: CERN Long shutdown 1
- 2014: Collinear resonance ionization spectroscopy (high resolution) of Fr
- Laser-assisted nuclear decay spectroscopy of 206,218Fr
- 2015: Collinear resonance ionization spectroscopy (high resolution) of Fr, Ga, Cu
- 2016: Collinear resonance ionization spectroscopy (high resolution) of Cu, Ra

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and N-ToF Experiments Committee (INTC) Collinear resonant ionization laser spectroscopy of rare francium isotopes.

J. Billowes¹, F. Le Blanc², M. Bissell³, P. Campbell¹, B. Cheal¹, K. T. Flanagan², D.H. Forest⁴, E. Mane¹, G. Neyens³, M. De Rydt³, H.H. Stroke⁵, B. Tastet², G. Tungate⁴ and P. Vingerhoets³

- Nuclear Physics Group, School of Physics and Astronomy, The University of Manchester, M13 9PL, UK.
- 2. IPN Orsay, 15 Rue G Clemenceau, 91406, Orsay Cedex, France.
- 3. IKS, K.U.Leuven, B-3001, Leuven, Belgium.
- 4. School of Physics and Astronomy, The University of Birmingham, B15 2TT, UK.
- 5. Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA.

Spokesperson: K. T. Flanagan **Contactperson: M. Bissell**

This programme requests in total 33 shifts of radioactive beam, which will be spread over several runs for a period of two years, commencing 2009.

Neutron-deficient francium

9	an and		1		1 All		1 100				1.	122	1. 5											_							
Fr 199 16 me	Fr 200 650 ms 24 ms	Fr 201 48 m	Fr 202 340 ms 250 ms	Fr 203 550 me	Fr 204	Fr 205	Fr 206	Fr 207	Fr 208	Fr 209	Fr 210 3.18m	Fr 211 3.19 m	Fr 212 200 m	Fr 213 3484	Fr 214 335-m 5.0-m	Fr 215 85 m	Fr 216 700 He	Fr 217 32 µs	Fr 218 22.0 ms 1.0 ms	Fr 219 20ms	Fr 220	Fr 221	Fr 222	Fr 223 21.8 m	Fr 224 3.33 m	Fr 225 40m	Fr 226	Fr 227 3.47 m	Fr 228	Fr 229 80.23	Fr 230
Rn 198 57 mi	Rn 199 320 ms 620 ms	Rn 200	Rn 201	Rn 202	Rn 203 26.7 s 45.6 s	Rn 204	Rn 205	Rn 206 5.87 m	Rn 207 9.35m	Rn 208	Rn 209 28.5 m	Rn 210	Rn 211	Rn 212 23.9 m	Rn 213 25.0 ms	Rn 214 270 m	Rn 215 23 yr	Rn 216 45 µm	Rn 217 540 µs	Rn 218 35 m	Rn 219	Rn 220	Rn 221	Rn 222 3.8231 d	Rn 223	Rn 224	Rn 225	Rn 226	Rn 227	Rn 228	

- Study of evolution of nuclear structure towards ¹⁹⁹Fr
 - chart
 - $(\pi s_{1/2}^{-1})^{1/2}$ + proton intruder state becomes the ground state in ¹⁹⁵At and ¹⁸⁵Bi Suggestion that ¹⁹⁹Fr has $I = \frac{1}{2}$ ground state spin with an associated large deformation
- Study of isotope/isomer shifts and electromagnetic moments will characterise this region

- Resonance ionization scheme:
- 422 nm: Doubled light from M2 Ti:Sa system
- 1064 nm: Light from Litron laser

- First experimental campaign at CRIS
 - Reduction in energy of proton intruder state $(\pi s_{1/2}^{-1})^{1/2}$ in this region of the nuclear

INPC2016

J. Uusitalo *et al.*, Phys. Rev. C **71** 024306 (2005) U. Jakobsson *et al.*, Phys. Rev. C **85** 014309 (2012)

Collinear resonance ionization spectroscopy of ²⁰²Fr

- Identity of hyperfine-structure resonances determined by alpha-decay energy
- Yield estimated to be 100 atoms/s
- Total experimental efficiency estimated to be 1%

Collinear resonance ionization spectroscopy of ²⁰⁴Fr

Identity of hyperfine-structure resonances determined by alpha-decay energy

Collinear resonance ionization spectroscopy of ²⁰⁴Fr

- The HFS of ²⁰⁴Fr was scanned across
- Decay measurement was taken every frequency step
- Gate on energy of alpha particle to enhance hyperfine structure of 3⁽⁺⁾, 7⁽⁺⁾ and 10⁽⁻⁾ states of ²⁰⁴Fr
- Alpha-tagging allows hyperfine-structures to be disentangled

Collinear resonance ionization spectroscopy of ²⁰⁴Fr

- The HFS of ²⁰⁴Fr was scanned across
- Decay measurement was taken every frequency step
- Gate on energy of alpha particle to enhance hyperfine structure of ²⁰⁴⁹Fr, ^{204m1}Fr and ^{204m2}Fr isomers
- Alpha-tagging allows hyperfine-structures to be disentangled

Evolution of resolution

October 2012

Fibre-coupled light from narrow-band Ti:Sa laser (RILIS)

CW laser light from Matisse Ti:Sa laser (COLLAPS) was chopped into pulses

- The 1064 nm ionization step was delayed after start of the 422 nm excitation step
- Smaller linewidths were achieved Upper-state splitting could now be resolved 200 Extraction of quadrupole moments 150 Arbitrary units 100 1064 nm 422.7 nm 100 ns pulse 100 ns later 50 9000 8000
- R.P. de Groote et al., Phys. Rev. Lett. **115** 132501 (2015) 21

November 2014

November 2015

CW laser light from new M2 Ti:Sa laser (CRIS) was chopped into pulses

Collinear resonance ionization spectroscopy of ²⁰⁶Fr

- Hyperfine structure of 3(+), 7(+) and 10(-) states of 206 Fr measured
- Laser-assisted nuclear decay spectroscopy performed on each state
- Branching ratios of ²⁰⁶Fr and ²⁰²At

r measured on each state

Change in mean-square charge radii

- Deviation from Pb (Z=82) charge radii trend at ²⁰³Fr (N=116)
- Marks onset of collective behaviour
- Measure quadrupole moment to determine static deformation

- First measurement of quadrupole moment of ²⁰³Fr
- Searched for $\frac{1}{2}$ + isomer ($t_{1/2}$ = 60 ms) but ran out of time
- Data analysis ongoing...

g-factors

- Ground state $(\pi_1h_{9/2})$ configuration down to ²⁰³Fr
- Proton intruder state $(\pi_{3s_{1/2}})$ not yet inverted with the ground state

K.T. Flanagan *et al.*, Phys. Rev. Lett. **111** 212501 (2013) **24** K.M. Lynch *et al.*, Phys. Rev. X **4** 011055 (2014)

Ground state configuration of ^{202,204}Fr determined to be $(\pi_{1}h_{9/2})(\nu_{3}p_{3/2})$

- Configuration in literature is (π1h_{9/2})(v2f_{5/2}) based on Fr-At-Bi alpha-decay systematics
- Initially a choice between $(\pi_1h_{9/2})(\nu_2f_{5/2})$ and $(\pi_1h_{9/2})(\nu_3p_{3/2})$ in the literature

S. Zhu, F. Kondev, NDS 109, 699 (2008) INPC2016 P. Van Duppen et al., NP A 529, 268 (1991)

Neutron-rich francium

- Possible due to 200 Hz pulsed laser system

Shortest-lived isotope ($t_{1/2} = 5 \text{ ms}$) measured with laser spectroscopy on-line

> G.J. Farooq-Smith et al., Phys Rev. C, Accepted **INPC2016**

Neutron-rich gallium isotopes

Ga 56 tm	Ga 57	Ga 58 1 m	Ga 59 1ms	Ga 60 70 ms	Ga 61 165 ms	Ga 62	Ga 63 32.4 s	Ga 64 2.627 m	Ga 65 152 m	Ga 66 9.49 h	Ga 67 52612 d	Ga 68 1.1275 h	Ga 69 60.106	G 21
Zn 55 20 ms	Zn 56 36 m	Zn 57 38 ms	Zn 58 84 ms	Zn 59 182.0 ms	Zn 60 2.38 m	Zn 61	Zn 62 926h	Zn 63 38.4 m	Zn 64 48.63 2.32+15 y	Zn 65 244.15.0	Zn 66 27.9	Zn 67 4.1	Zn 68 18.75	13.76

- closures
- Changes in nuclear configuration due to polarization of the core
- Beta-decay of ^{80g,m}Ga
- Neutralization of only 5% limited our efficiency on the neutron-rich side Neutron rich: ⁷⁵Ga,⁷⁹⁻⁸²Ga
- Neutron deficient: ⁶⁵Ga,⁶⁷Ga
- Data analysis ongoing...

Study the stability of the nuclear structure beyond the N=50 and Z=28 shell

Neutron-rich copper isotopes

Cu 62	Cu 53 300 m	Cu 54 75 m	Cu 55 40 ms	Cu 66 33 m	Cu 57 196.3 ms	Cu 58 3204 s	Cu 59 1.358 m	Cu 60 23.7 m	Cu 61 3333 h	Cu 62 9.75 m	Cu 63 88.17	Cu 64 127010	C
Ni 51	Ni 52	Ni 53	Ni 54	Ni 55	Ni 56	Ni 57	Ni 58	Ni 59	Ni 60	Ni 61	Ni 62	Ni 63	N
30 ms	38 ms	45 ms	104 ms	304 mi	6.075 d	1.406 d	66.0709	76 ky	26.2201	1.1299	14945	100.6 y	Q

- Neutron-rich copper isotopes with 1 proton outside Z=28 towards N=50 Study of the evolution of the shell model with neutron excess
- Study spins, magnetic and quadrupole moments of copper isotopes A=76-78
- ⁷⁵Cu measured yield of 20,000 ions/s Estimated yield of ⁷⁸Cu of < 20 ions/s
- Data analysis ongoing...

INPC2016

⁷⁶Cu

Neutron-rich copper isotopes

Cu 52	Cu 53 300 m	Cu 54 75 m	Cu 55 40 ms	Cu 56 93 ms	Cu 57 196.3 mi	Cu 58 3204 s	Cu 59 1.358 m	Cu 60 23.7m	Cu 61 3333 h	Cu 62 9.75 m	Cu 63 6k17	Cu 64 12701 N	0
Ni 51	Ni 52	Ni 53	Ni 54	Ni 55	Ni 56	Ni 57	Ni 58	Ni 59	Ni 60	Ni 61	Ni 62	Ni 63	N
30 ms	38 ms	45 mi	104 ms	204 mi	6.075 d	1.406 d	68.0799	76 ky	26.2201	1.1299	14945	100.6 y	G

Odd isotopes

Neutron-rich copper isotopes with 1 proton outside Z=28 towards N=50 Study of the evolution of the shell model with neutron excess

Study spins, magnetic and quadrupole moments of copper isotopes A=76-78

Studied ^{63-66, 68-78}Cu isotopes

Neutron-deficient radium isotopes

- High background (francium) limited measurements
- Turned attention to neutron-rich radium isotopes
- Studied ^{214,222-232}Ra, with hints of resonance for ^{233,234}Ra
- Narrowband TiSa for high-resolution studies
- Broadband TiSa for resonance-peak searches
- Resonance ionization scheme:
- 558nm: Light from PDL

						1. Sugar										
1.6 µ8	Ra 218 25.6 µs	Ra 219 10 ms	Ra 220 18 m	Ra 221	Ra 222 38.0 s	Ra 223 1143-6	Ra 224 3.64 d	Ra 225	Ra 226 1.600 ky	Ra 227 42.2 m	Ra 228 5.75 y	Ra 229 40 m	Ra 230	Ra 231 1.72 m	Ra 232 4.2m	
Fr 216 700 mi	Fr 217 22 µi	Fr 218 22.0 ms 1.0 ms	Fr 219 20 ms	Fr 220 27.4 s	Fr 221	Fr 222 14.2 m	Fr 223 21.8 m	Fr 224	Fr 225 4.0 m	Fr 226	Fr 227 2.47 m	Fr 228	Fr 229 60.2 s	Fr 230	Fr 231 17.8 s	

Experiment performed in August

Study of evolution of nuclear structure in neutron-deficient radium isotopes Separate contribution of even-Z core from independent proton in francium Investigate charge radii and suggested departure from sphericity

714 nm: Chopped CW light from Matisse TiSa laser (narrowband)/ Z-cavity TiSa laser (broadband)

Neutron-rich radium isotopes

								harmon				1 Same				
	Ra 202 2.6 ms	Ra 203 33 m 1 m	Ra 204 60 ms	Ra 205	Ra 206 240 ms	Ra 207	Ra 208 135	Ra 209	Ra 210	Ra 211	Ra 212	Ra 213 21m 2741	Ra 214 246s	Ra 215 1.50 ms	Ra 216 182 m	
-	Fr 201 48 ms	Fr 202 340 ms 250 ms	Fr 203 550 ms	Fr 204	Fr 205	Fr 206	Fr 207	Fr 208	Fr 209	Fr 210 3.18m	Fr 211 3.10 m	Fr 212 200 m	Pr 213	Fr 214 335 mil 5.0ms	Fr 215 85 m	

- Data analysis just started...

Experiment performed in August

Studied ^{214,222-232}Ra, with hints of resonance for ^{233,234}Ra

Even isotopes

Summary

Summary

- Presented technique of CRIS: collinear resonance ionization spectroscopy
- Hyperfine structure measurements allow extraction of nuclear properties
- Presence of Decay Spectroscopy Station allows for:
- Identification of hyperfine-structure peaks
- Dedicated decay spectroscopy of pure ground and isomeric states
- Demonstration of technique with neutron-deficient francium isotopes
- Recent high-resolution laser spectroscopy studies of Ga, Cu and Ra isotopes

The **CRIS**, Collaboration

J. Billowes, C. Binnersley, M. L. Bissell, I. Budincevic, T.E. Cocolios, T. Day Goodacre, R. P. de Groote, G. J. Farooq-Smith, V. N. Fedosseev, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, W. Gins, H. Heylen, T. Kron, A. Koszorus, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, A. Vernon, K. D. A. Wendt, S. G. Wilkins, X. Yang

With many thanks to my PhD supervisor, Kieran Flanagan, My current supervisor, Maria Garcia Borge, And the IUPAP C12 committee for this wonderful honour.

Thanks for your attention!

Fitting the hyperfine structure

The perturbation of each energy level is given by: $\frac{\Delta E}{\hbar} = \alpha A + \beta B$

where:

$$\alpha = \frac{K}{2} \qquad \beta = \frac{3K(K+1) - 4I(I+1)J(J+1)}{8I(2I-1)J(2J-1)}$$
$$K = F(F+1) - I(I+1) - J(J+1)$$

The frequency of each HF peak is given by: $\gamma = \upsilon + \alpha_u A_u + \beta_u B_u - \alpha_l A_l - \beta_l B_l$

• where
$$A = \frac{\mu B_0}{IJ}$$
 $B = eQ_s \left\langle \frac{\partial^2 V_e}{\partial z^2} \right\rangle$

Isotope shift $\,\delta v$

Magnetic dipole moment μ_I

New charge exchange cell

- Current charge exchange cell can only use potassium
 - Limits elements to those with good neutralization cross-section with potassium
- New charge exchange cell can be used with potassium, sodium, rubidium...
 - Choose alkali metal based on isotope under study
- Increase neutralization efficiency

on with potassium sodium, rubidium...

Unambiguous assignment of HFS peaks

- Mis-identification of HFS peak in ²⁰⁶Fr in low-resolution data
 - Missing peak for the ^{206m2}Fr state
- structure

• High-resolution studies and laser-assisted decay spectroscopy identified correct

