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mean life

T =

N, and N, = abundances of the radionuclide at times t, and t,
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Isotope T (Myr)

Reference Initial Solar
Isotope System ratio

235 (1.1 £0.3) x 1074 (27%)
2381 (6.8 +1.0) x 103 (15%)
1804 f (9.72 £ 0.44) x 10~ (4%)

198Sm 98 0r149 Sm  (8.86+0.5) x 1073 (5%)

247Cm 22.5
244py 30
182§ 13
129| 23
107pd 9.4
22Nb 50
>3Mn 5.3
®0Fe 3.8
41Ca 0.15
26A] 1.03

127) (1.19 + 0.20) x 10~* (15%)
108pd (5.9 +2.2) x 10°° (37%)
2Mo (3.6 1.2) x 1075(33%)
55SMn (6.28 + 0.66) x 1076 (10%)
56Fe 107 - 10

40C3 ~4.2 %1079

27Al  (5.23 £0.13) x 105 (2.5%)
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Detailed chronology
of the events that
predated the birth

of the Sun

Detailed chronology of

planetary growth from
micrometer-sized dust to
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Qualitative chronology of the events
that predated the birth of the Sun

The circumstances of the birth of the Sun

e 7% * O
o % * Gelt 8
alac‘uc evolution |[ast stell ' '
galk ast stefiar star-forming star birth 4.57 Gyr
enrichment by stellar additions
winds, supernovae, cloud self-pollution by  Solar System today meteoritic
stellar mergers, ... stars with short formation @analysis reveals the

lifetimes presence of radioactive

nuclei when the Solar

Isolation time} 1 - 50 Myr? l System was born

. Galaxy age ~ 10 Gyr

* Small star-forming clouds live as short as 4-5 Myr.

 More massive clouds have longer lifetimes, up to 40 Myr.

* A protracted isolation timescale would imply that our Sun
was born in a high-mass stellar nursery.
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Qualitative chronology of the events
that predated the birth of the Sun
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alactic evolution
g last stellar star-forming  star birth 4.57 Gyr
enrichment by stellar additions
Ninde sbermouas cloud self-pollution by Solar System today meteoritic

stellar mergers, ... stars with short ¢ ~tion  analysis reveals the
lifetimes l presence of radioactive

L Galaxy age ~ 10 Gyr |\, :|Isolation timel 1-50 Myr? nuclei when the Solar

System was born

How do we determine N,?

Stellar Nucleosynthesis + Galactic Chemical Evolution




Isotope Tt (Myr) Reference Initial Solar

Isotope System ratio
ﬁ”Cm 225 235 (1.1 £0.3) x 10™* (27%) \
244p 30 238 (6.8 £1.0) x 103 (15%)
1824f 13 180Hf  (9.72+£0.44) x 10~ (4%)
198Sm 98 0r149 Sm  (8.86+0.5) x 1073 (5%)
129 23 127| (1.19 £ 0.20) x 10~* (15%)
107p( 9.4 108pd  (5.9+2.2) x 107 (37%)
Qsz 50 2Mo  (3.6+1.2)x107°(33%) /
3V 5.3 5Min  (6.28 + 0.66) x 1075 (10%)
60F @ 38 56F @ 102 -10°°
414 0.15 40C3 ~4.2 x107°

26| 1.03 27Al  (5.23 +0.13) x 1075 (2.5%)



The nuclei heavier than Fe are produced by neutron captures:
rapid (supernovae/neutron star mergers) or slow (AGB stars)

W
— 5]
5]
]
L H- -

A few exceptions produced by the p process (supernovae):
disintegrations (y process) or proton captures



Slow and Rapid neutron captures
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The nuclei heavier than Fe are produced by neutron captures:
rapid (supernovae/neutron star mergers) or slow (AGB stars)

BROOKHIAEN

NATIONAL LABORATORY

R ——

# p process

182Hf | r and/or s process?

r process

r+S process

r process | = o=t

A few exceptions produced by the p process (supernovae):
disintegrations (y process) or proton captures
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The prehistory of the Solar System
updated from Lugaro et al. (2014, Science); Lugaro et al. (2016, PNAS)

last AGB star star-forming star birth

cloud
PAS
. SRS

time T Isolation time: 1-50 Myr? 0

(Myr) | |

Solar System
formation

56 > 182Hf > 12
49 > 107pd > 9

Uncertainties from:

* missing galactic chemical evolution predictions

e s-process production: 22Ne+a; decay rate and neutron
capture on 3Hf, neutron captures on 107.108pd




The prehistory of the Solar System
updated from Lugaro et al. (2014, Science); Lugaro et al. (2016, PNAS)

last neutron last AGB star star-forming star birth

star merger cloud
0 W O
w 0

A

time T Isolation time: 1-50 Myr? 0

(Myr) | |

Solar System
formation

<€

150 > 1291 > 76
337 >24py>73 | | 56> 182Hf > 12

205 >247Cm > 100 | | 49>1'%Pd>9

Uncertainties from:

* missing galactic chemical evolution predictions

e the actinides r-process production yields (Goriely &
Janka 2016)




The prehistory of the Solar System
updated from Lugaro et al. (2014, Science); Lugaro et al. (2016, PNAS)

last neutron last last AGB star star-forming star birth
star merger SNla cloud
O * 0)
® ¥ a5
<
time T T Isolation time: 1-50 Myr? 0
(Myr) | I
53Mn > 15 Solar System
formation
150 > 129| > 76

337 >24py>73 | | 56> 182Hf > 12
205 >247Cm > 100 | 49>19Pd>9

Uncertainties from:

missing galactic chemical evolution predictions

the half life of >3Mn
the 32S(B+)3?P decay rate (Parikh et al. 2013)




The prehistory of the Solar System
updated from Lugaro et al. (2014, Science); Lugaro et al. (2016, PNAS)

last

starmerger SNla E ‘;
<

neutron 135U |ast AGB star starjg;r(;wing star birth

SENE©

ﬁ
time I Isolation time: 1-50 Myr? 0
(Myr) |
*Mn > 15 94 > 145m (SNIa) | >0lar System

337 >244py >73 | | 56> 182Hf > 12
205 >247Cm > 100 | | 49>1'9Pd>9

150 > 129 > 76 Travaglio et al. (2014)

Uncertainties from:

the %3Gd(y,a)***Sm reaction rate;
the 146Sm decay rate (68 Myr: Kinoshita et al. 2012,
103 Myr: Marks et al. 2014)




The prehistory of the Solar System

updated from Lugaro et al. (2014, Science); Lugaro et al. (2016, PNAS)

last neutron 135t |ast AGB star last low-mass star-forming star birth
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A

<€
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time T I [ 1solation time: 1-50 Myr? 0

(Myr)

53Mn > 15 Nb >7 | |94 > 1465m (SNIa)

150 > 129 > 76 Travaglio et al. (2014)

337 > 244Pu > 73 56 > 182Hf > 12
205 > 247Cm > 100 | | 49>'Pd>9

I
Solar System
formation

Uncertainties from:
* missing galactic chemical evolution predictions
e core-collapse supernova models




The prehistory of the Solar System
updated from Lugaro et al. (2014, Science); Lugaro et al. (2016, PNAS)

last neutron
star merger

.

last |35t AGB star last low-mass star-forming star birth

CCSN

cloud
w
CIEED
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time
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|
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I
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Isolation time: 1-50 Myr? 0

53Mn > 15

2Nb > 7

150 > 12°| > 76
337 > 244Pu > 73
205 > 24Cm > 100

56 > 182Hf > 12
49 > 107pd > 9

94 > 145m (SNIa) | >0lar System

Travaglio et al. (2014)

Need to improve:

t
t
t

ne nuclear and stellar physics inputs
he description of galactic chemical evolution

ne accuracy and precision of meteoritic data
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The implications

Temperature (K)

g The radioactive decay of
- 267\l (0.7 Myr) in the early Solar
i System was a main source of heat
in planetesimals, altering their
thermo-mechanical evolution and
Time: .55 Myt outgassing volatiles.
Lichtenberg et al. 2016 (Icarus)

mWHHU‘HH\
N
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Are other planetary systems born rich in %°Al?

Extrasolar planetesimals without 2°Al would have more
ice, and deliver more water to extrasolar terrestrial
planets, with implications on their habitability.




Ciesla et al. (2015, ApJ) calculated the effect of different ice
content in the planet building blocks beyond the snow line:

Water mass fraction for planets in the Habitable Zone

100 g ———m—————————————————— ———

much less 2°Al .
Icy planetesimals 50% water «

than in the
Solar System

QO OO0

as much
26A] as in

the Solar
System

Solar System planetesimals 5% water

O % o % <© ;
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The hypotheses

“LOCAL”: A nearby star or
supernova injected %°Al into the
protosolar nebula or disk

Cameron & Truran 1977 ... Hester et al. 2004 ...
Wasserburg et al. 2006 ... Lugaro et al. 2012 ... Pan et al.
2012 ... Gounelle 2015

artist impression:®

“GLOBAL”: The molecular cloud
lived long enough that stellar
winds and supernovae polluted
with %°Al the gas from which
new stars formed

artist impression |

Gaidos et al. 2009 ... Vasileiadis et al. 2013 ... Young 2014, 2016
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The hypotheses

R S “LOCAL”: A nearby star or
N supernova injected 2°Al into the
protosolar nebula or disk

Pan et al.

No consensus on a 40 year
“GLC old question

lived long enough that stellar

winds and supernovae polluted
with %°Al the gas from which
new stars formed

artist imp

artist impression |

Gaidos et al. 2009 ... Vasileiadis et al. 2013 ... Young 2014, 2016
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Would this be similar in extrasolar terrestrial planets?



232Th (14 Gyr) and 238U (4.5 Gyr)
make up 30%—-50% of the Earth’s energy budget.

Would this be similar in extrasolar terrestrial planets?
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Unterborn et al. (2015) also presented a thermal model to
evaluate the effect of different amounts of Th in extrasolar
terrestrial planets.

Power produced by radiogenic sources (TW)
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Time After Formation (Ga)

Planets with higher Th possess
larger energy budgets.




Unterborn et al. (2015) also presented a thermal model to
evaluate the effect of different amounts of Th in extrasolar

terrestrial planets.

Power produced by radiogenic sources (TW)

T rrr[rrrrrrrrrrrrrr

120 — Earth

—— Earth X 2.51 Th 3

100 .
— Earth x 0.59 Th 3

80
60

40
20

0 2 4 6 8 10 12
Time After Formation (Ga)

Planets with higher Th possess
larger energy budgets.

Mantle convection
starts earlier
Increased likelihood
for carbon and water
cycling between the
surface crust and
planetary interior
Broader range of
planets which may
support habitable
surfaces



Why such a spread in Th?

Th and U are produced by the r process: use Eu as a proxy

r—— log(Eu/Fe) — log(Eu/Fe),, '
-, SR, B
: R R
1F e :_"-'
L oGl | A factor ~2.5
:
= . AT
k i f I ' *

-4' | % ' 2 o4 itl}
log(Fe/H) — log(Fe/H)., .,
Evolution of Eu abundances in an inhomogeneous model of galactic

enrichment including both Jet Supernovae and neutron star mergers
as r-process sites (Wehmeyer et al. 2015)



Conclusions

* Opportunities are growing to use radlonuclldes
to investigate *:

— the origin of the Solar System ./

— the properties of extrasolar planetary systems

e Stellar nucleosynthesis is the core knowledge
on which all these applications are based

* Nuclear physics inputs are needed for accurate
model predictions: from half lives (e.g.,1**Sm) to
n-captures (e.g., 1°7Pd, 198Pd, %®Al), p-captures
(e.g., 2°Mg and 2Al), etc. etc.



