

Quantum-State Selective Decay Spectroscopy of ²¹³Ra and ⁵³Co^m

<u>Ch. Lorenz¹</u>, L.G. Sarmiento¹, D. Rudolph¹, C. Fahlander¹, U. Forsberg¹, P. Golubev¹, R. Hoischen¹, N. Lalović^{1,2}, A. Kankainen³, T. Eronen³, L. Canete³, D. Cox³, J. Hakala³, A. Jokinen³, V. Kolhinen³, J. Koponen³, I. Moore³, P. Papadakis³, I. Pohjalainen³, J. Reinikainen³, S. Rinta-Antila³, S. Stolze³, A. Voss³, M. Block^{2,4,5}, J. Gerl², D. Ackermann², M.L. Cortes², M. Dworschak², T. Habermann², F.P. Heßberger^{2,4}, J. Khuyagbaatar², I. Kojouharov², N. Kurz², D. Nesterenko², H. Schaffner², L.-L. Andersson⁶, C. Droese⁷, M. Eibach⁵, J. Ketelaer⁵

¹Department of Physics, Lund University, S-22100 Lund, Sweden
 ²GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
 ³Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
 ⁴Helmholtz-Institut Mainz, D-55099 Mainz, Germany
 ⁵Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany
 ⁶Department of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom
 ⁷Universität Greifswald, D-17487 Greifswald, Germany

- Geant4-aided Quantum-state Selective Decay Spectroscopy
 Setup and Simulation
- 2. The Alpha Decay Branching in ²¹³Ra

Outline

3. The Proton Decay Branching in ⁵³Co^m

4. Conclusion & Outlook

Geant4-aided Quantum-state Selective Decay Spectroscopy Setup and Simulation

Incoming Beam 'Cocktail'

Penning Trap

Penning Trap

Penning Trap

[1] L.-L. Andersson et al., Nucl. Instrum. Meth. A 622, 164 (2010).

The whole detector setup is implemented in Geant4 [2]

[1] L.-L. Andersson et al., Nucl. Instrum. Meth. A 622, 164 (2010).[2] L.G. Sarmiento, L.-L. Andersson, D. Rudolph, Nucl. Instrum. Meth. A 667, 26 (2012).

The whole detector setup is implemented in Geant4 [2]

→ Geant4-aided Quantum-state Selective Decay Spectroscopy

[1] L.-L. Andersson et al., Nucl. Instrum. Meth. A 622, 164 (2010).[2] L.G. Sarmiento, L.-L. Andersson, D. Rudolph, Nucl. Instrum. Meth. A 667, 26 (2012).

• Comparing virtual experiment with the real experiment – <u>how</u>?

- Comparing virtual experiment with the real experiment <u>how</u>?
- Comparing spectra:
 - Gamma spectra
 - Particle (alpha/proton) spectra
 - Coincidence spectra

- Comparing virtual experiment with the real experiment <u>how</u>?
- Comparing spectra:
 - Gamma spectra
 - Particle (alpha/proton) spectra
 - Coincidence spectra

- Criteria:
 - Spectrum shape
 - Spectrum height (norm should be ~1)
 - Peak intensities

- Comparing virtual experiment with the real experiment <u>how</u>?
- Comparing spectra:
 - Gamma spectra
 - Particle (alpha/proton) spectra
 - Coincidence spectra

- Criteria:
 - Spectrum shape
 - Spectrum height (norm should be ~1)
 - Peak intensities

Tune the parameters:

➔ Branching ratios, transition multipolarities, mixing ratios, ...

- Comparing virtual experiment with the real experiment <u>how</u>?
- Comparing spectra:
 - Gamma spectra
 - Particle (alpha/proton) spectra
 - Coincidence spectra

- Criteria:
 - Spectrum shape
 - Spectrum height (norm should be ~1)
 - Peak intensities

Tune the parameters:

→ Branching ratios, transition multipolarities, mixing ratios, ...

- Comparing virtual experiment with the real experiment <u>how</u>?
- Comparing spectra:
 - Gamma spectra
 - Particle (alpha/proton) spectra
 - Coincidence spectra

- Criteria:
 - Spectrum shape
 - Spectrum height (norm should be ~1)
 - Peak intensities

Tune the parameters:

- → Branching ratios, transition multipolarities, mixing ratios, ...
- \rightarrow .
- Until it is self-consistent ...

 $\frac{0}{1/2} 2.74(6) \text{ min}$

 Many quantities in the ²¹³Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3]

[3] K. Valli et al., Phys. Rev. 161, 1284 (1967).

- Many quantities in the ²¹³Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3]
- Later studies by Raich et al. [4] and Kuusuniemi et al. [5] focus on the decay 213 Ra $\rightarrow ^{209}$ Rn

[3] K. Valli et al., Phys. Rev. 161, 1284 (1967).
[5] P. Kuusiniemi et al., Eur. Phys. J. A 30 551(2006).

[4] D.G. Raich et al. , Z. Phys. A 279, 301 (1976).

.

- Many quantities in the ²¹³Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3]
- Later studies by Raich et al. [4] and Kuusuniemi et al. [5] focus on the decay 213 Ra $\rightarrow ^{209}$ Rn
- ²¹³Ra decay is a good candidate for a proof of principle for *Geant4-aided Quantum-state Selective Decay Spectroscopy*

[3] K. Valli et al., Phys. Rev. 161, 1284 (1967).
[5] P. Kuusiniemi et al., Eur. Phys. J. A 30 551(2006).

[4] D.G. Raich et al. , Z. Phys. A 279, 301 (1976).

.

- Many quantities in the ²¹³Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3]
- Later studies by Raich et al. [4] and Kuusuniemi et al. [5] focus on the decay 213 Ra $\rightarrow ^{209}$ Rn
- ²¹³Ra decay is a good candidate for a proof of principle for *Geant4-aided Quantum-state Selective Decay Spectroscopy*
- Experiment @ GSI Darmstadt in 2009

[3] K. Valli et al., Phys. Rev. 161, 1284 (1967).[5] P. Kuusiniemi et al., Eur. Phys. J. A 30 551(2006).

[4] D.G. Raich et al. , Z. Phys. A 279, 301 (1976).

- Many quantities in the ²¹³Ra decay path date back to the first studies by K. Valli et al. in 1967/1968 [3]
- Later studies by Raich et al. [4] and Kuusuniemi et al. [5] focus on the decay 213 Ra $\rightarrow ^{209}$ Rn
- ²¹³Ra decay is a good candidate for a proof of principle for *Geant4-aided Quantum-state Selective Decay Spectroscopy*
- Experiment @ GSI Darmstadt in 2009
- <u>Quantum-state selective</u> beam from SHIPTRAP (mass selection!) [6]: 100% pure beam of ²¹³Ra ground state

[3] K. Valli et al., Phys. Rev. 161, 1284 (1967).[5] P. Kuusiniemi et al., Eur. Phys. J. A 30 551(2006).

[4] D.G. Raich et al., Z. Phys. A 279, 301 (1976).[6] M. Block et al., Eur. Phys. J. D 45, 39 (2007).

→ Particle (α) spectrum

→ Particle (α) spectrum

→ Particle (α) spectrum

→ Particle (α) spectrum

→ Particle (α) spectrum

→ Particle (α) spectrum

 \rightarrow Gamma spectrum

 \rightarrow Gamma spectrum

0 1/2

511

 328_{51}

 $(1/2^{-1})$

 \rightarrow Gamma spectrum

0 1/2

NΓ

511

 $(1/2^{-1})$

→ Gamma spectrum

0 1/2

511

 $(1/2^{-1})$

→ Gamma spectrum

0 1/2

511

 $(1/2^{-1})$

\rightarrow Coincidence spectra

\rightarrow Coincidence spectra

LUND UNIVERSITY

3174 <u>19/2</u>247(12)ms

53@27 Co

242(8)ms 0____7/2⁻

3174 <u>19/2</u>247(12)ms

53@27 Co

The Proton Decay Branching in ${}^{53}Co^m$ 3174

Proton radioactivity was discovered in 1970 in the 19/2⁻ isomeric state of ⁵³Co
 [7,8]

[7] K.P. Jackson et al., Phys. Lett. 33B, 281 (1970). [8] J. Cerny et al., Phys. Lett. 33B, 284 (1970).

- Proton radioactivity was discovered in 1970 in the 19/2⁻ isomeric state of ⁵³Co
 [7,8]
- half-life $T_{1/2}$
- Q-value
- Branching ratio b_p

[7] K.P. Jackson et al., Phys. Lett. 33B, 281 (1970). [8] J. Cerny et al., Phys. Lett. 33B, 284 (1970).

- Proton radioactivity was discovered in 1970 in the 19/2⁻ isomeric state of ⁵³Co
 [7,8]
- half-life $T_{1/2} \rightarrow measured$
- Q-value \rightarrow measured
- Branching ratio b_p

[7] K.P. Jackson et al., Phys. Lett. 33B, 281 (1970). [8] J. Cerny et al., Phys. Lett. 33B, 284 (1970).

- Proton radioactivity was discovered in 1970 in the 19/2⁻ isomeric state of ⁵³Co [7,8]
- half-life $T_{1/2} \rightarrow measured$
- Q-value \rightarrow measured
- Branching ratio $b_p \rightarrow estimated$ to $b_p \sim 1.5\%$ [9]

[7] K.P. Jackson et al., Phys. Lett. 33B, 281 (1970).
[8] J. Cerny et al., Phys. Lett. 33B, 284 (1970).
[9] J. Cerny et al., Nucl. Phys. A188, 666 (1972).

- Proton radioactivity was discovered in 1970 in the 19/2⁻ isomeric state of ⁵³Co
 [7,8]
- half-life $T_{1/2} \rightarrow measured$
- Q-value \rightarrow measured
- Branching ratio $b_p \rightarrow estimated$ to $b_p \sim 1.5\%$ [9]

- Experiment @ University of Jyväskylä (JYFL) in 2015
- <u>Quantum-state selective</u> beams from JYFLTRAP (mass selection!) [10]: 100% pure beams of ⁵³Co, ⁵³Co^m, ⁵²Fe, ⁵³Fe^m

 [7] K.P. Jackson et al., Phys. Lett. 33B, 281 (1970).
 [8] J. Cerny et al., Phys. Lett. 33B, 284 (1970).
 LUND

 [9] J. Cerny et al., Nucl. Phys. A188, 666 (1972).
 [10] V.S. Kolhinen et al., Nucl. Instrum. Meth. A 528, 776 (2004)

 <u>Problem</u>: the decay of the 7/2⁻ ground-state and the 19/2⁻ isomer of ⁵³Co to their isobaric analogue states (IAS) in ⁵³Fe are nearly identical!

 <u>Problem</u>: the decay of the 7/2⁻ ground-state and the 19/2⁻ isomer of ⁵³Co to their isobaric analogue states (IAS) in ⁵³Fe are nearly identical!

→ Quantum-state selective radioactive beams needed

Conclusion & Outlook

• 100% pure beams + detectors system TASISpec + Geant4 Simulation

- 100% pure beams + detectors system TASISpec + Geant4 Simulation
 - New branching ratios in ²¹³Ra and ⁵³Co^m
 - New mixing ratios in ²⁰⁹Rn

• Papers are in preparation for the two projects ²¹³Ra & ⁵³Co^m

- *Simulation aided Quantum-State Selective Decay Spectroscopy* proofs to be a valuable technique to investigate cases where
 - decay patters are not unambiguous (⁵³Co^m)
 - but also for reviewing/remeasuring older decay data (²¹³Ra)

Thank you for your Attention

. . . .

TASISpec in Jyväskylä

