Australian Facility For Noble-Gas Radio Isotope Measurements Using Atom Trap Trace Analysis

Philip S. Light, Robert Sang, Axel Suckow, Pere Masque, Dioni Cendon, Bear McPhail, Mike Hotchkis, Stephen Eggins and Andre N. Luiten

This facility is supported under Australian Research Council’s Linkage Infrastructure, Equipment and Facilities scheme (project LE160100025)
A new facility for fast and accurate measurements of noble gas radio-nuclide ratios

$^{81}\text{Kr}/\text{Kr}$, $^{85}\text{Kr}/\text{Kr}$, $^{39}\text{Ar}/\text{Ar}$
Noble Gas Radio-Isotope Tracers

- Environmental markers to study ground and ocean water movement

<table>
<thead>
<tr>
<th>Tracer</th>
<th>Half-Life (years)</th>
<th>Groundwater Age / Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>39Ar</td>
<td>$\tau_{1/2} = 269$</td>
<td>1000 - 1000000</td>
</tr>
<tr>
<td>81Kr</td>
<td>$\tau_{1/2} = 229,000$</td>
<td>1000000 - 100000000</td>
</tr>
<tr>
<td>14C</td>
<td>$\tau_{1/2} = 5730$</td>
<td>10000000 - 1000000000</td>
</tr>
<tr>
<td>36Cl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Noble Gas Radio-Isotope Tracers

- Application to water dating:
 - ^{39}Ar, ^{81}Kr, $^{85}\text{Kr}^+$ are cosmogenic nuclides
 - Nearly ideal physical & chemical characteristics (e.g. unreactive)
 - Well defined input function at water/atmosphere interface

^{85}Kr atmospheric concentration is primarily due to nuclear fuel reprocessing

Picture credit: Axel Suckow, CSIRO
Noble Gas Radio-Isotope Tracers

- Application to water dating:
 - ^{39}Ar, ^{81}Kr, ^{85}Kr† are cosmogenic nuclides
 - Nearly ideal physical & chemical characteristics (e.g. unreactive)
 - Well defined input function at water/atmosphere interface

†^{85}Kr atmospheric concentration is primarily due to nuclear fuel reprocessing
Noble Gas Radio-Isotope Tracers

- Application to water dating:
 - 39Ar, 81Kr, 85Kr† are cosmogenic nuclides
 - Nearly ideal physical & chemical characteristics (e.g. unreactive)
 - Well defined input function at water/atmosphere interface

- Rarely used due measurement difficulty

85Kr atmospheric concentration is primarily due to nuclear fuel reprocessing

Picture credit: Axel Suckow, CSIRO
Noble Gas Radio-Isotope Tracers

- Environmental markers to study ground and ocean water movement

- Noble-gas mass spectrometry
- Gas chromatography
- Radiometry
- Accelerator mass spectrometry
- Atom trap trace analysis

<table>
<thead>
<tr>
<th>Noble Gas Tracer</th>
<th>Groundwater Age (Years)</th>
</tr>
</thead>
</table>
| 3He/T3He | 81Kr: $\tau_{1/2} = 10.8$ years 39Ar: $\tau_{1/2} = 269$ years 85Kr: $\tau_{1/2} = 10.8$ years 14C: $\tau_{1/2} = 5730$ years 36Cl: $\tau_{1/2} = 100000$ years
| CFC/SF$_6$ | 4He (estimates) 40Ar

16th September 2016
AUSTRALIAN FACILITY FOR NOBLE-GAS RADIO ISOTOPE MEASUREMENTS – INPC 2016
Radio-Isotope Measurements

- Measurements difficult due to small atmospheric abundance:
 - $^{85}\text{Kr}/\text{Kr}: 2\times 10^{-11}$ $^{81}\text{Kr}/\text{Kr}: 5.2\times 10^{-13}$ $^{39}\text{Ar}/\text{Ar}: 8\times 10^{-16}$
 - 1L of surface water contains just ~ 9000 ^{39}Ar atoms & ~ 1500 ^{81}Kr atoms
 - Need to measure ratio to $\sim 1\%$ of atmospheric abundance in water dating applications

- Low-level decay counting (LLC) is traditional measurement technique
 - Large water samples required (2000-5000 litres for ^{39}Ar)
 - Long measurement times (8-60 days for ^{39}Ar)
 - Performed where a low background count is present
 - e.g. University of Bern, 35m below ground
Atom Trap Trace Analysis (ATTA)

- Laser-based technique for measuring noble-gas radio-isotope ratios
- Atom-counting rather than decay-counting ➞ smaller samples, faster measurement
- Lasers used to cool specific isotope and hold in a magneto-optical trap
- Shifts in energy levels between isotopes permit selection of a single isotope by tuning laser frequencies

Rohan Glover, PhD Thesis, Griffith University
Atom Trap Trace Analysis

- Based on established laser cooling and magneto-optical trapping

Atom Trap Trace Analysis

- Current ATTA systems worldwide:
 - Argonne National Laboratory, IL, USA
 - Predominantly focussed on Kr measurements
 - Only facility currently open for general samples
 - Throughput ~100 samples / year
 - University of Heidelberg, Germany
 - Initial 39Ar measurements demonstrated
 - University of Science and Technology of China, Hefei, China
 - Developing Kr capability
Performance

- Initial facility will offer ATTA measurements with performance comparable to existing labs

- Upgraded facility will offer reduced sample size and measurement time

<table>
<thead>
<tr>
<th></th>
<th>39Ar</th>
<th>81Kr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ml-STP</td>
<td>Water / L</td>
<td>Time</td>
</tr>
<tr>
<td>AMS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LLC</td>
<td>~700</td>
<td>~3000</td>
<td>8-60 days</td>
</tr>
<tr>
<td>ATTA Facility - initial</td>
<td>1</td>
<td>5</td>
<td>~12 hours</td>
</tr>
<tr>
<td>ATTA Facility - upgraded</td>
<td>0.1</td>
<td>0.5</td>
<td>~5 hours</td>
</tr>
</tbody>
</table>
Sample Preparation

- ATTA measurement requires small gas-phase noble-gas sample
 - Mixed noble-gas samples are not a problem due to selectivity of atom-trapping

- CSIRO’s Environmental Tracer and Noble Gas Laboratory in Adelaide can
 - Extract noble gases from water samples
 - Extract gas from water in the field, and separate out noble-gas components

Picture credit: Arne Kersting, Axel Suckow, CSIRO
Timeline

- **Q3 2016**: Construction commenced at University of Adelaide and Griffith University.
- **Q4 2017**: Initial uncalibrated measurements available in Adelaide.
- **Q3 2018**: Fully calibrated measurements – agreement with low-level counting.
- **Q2 2019**: Laser excitation upgrade installation – smaller sample size.
- **Q4 2019**: Fully calibrated measurements – increased sample throughput.
Australian Facility For Noble-Gas Radio Isotope Measurements

- Fast, accurate measurements of 81Kr, 85Kr and 39Ar radio-nuclide ratios
- Small sample size requirements (isotope dependent)
- Expected to commence sample measurement late 2017
- Funded through per-sample analysis fee

This facility is supported under Australian Research Council’s Linkage Infrastructure, Equipment and Facilities scheme (project LE160100025)