

Australian Facility For Noble-Gas Radio Isotope Measurements Using Atom Trap Trace Analysis

<u>Philip S. Light</u>, Robert Sang, Axel Suckow, Pere Masque, Dioni Cendon, Bear McPhail, Mike Hotchkis, Stephen Eggins and Andre N. Luiten

vernment This facility is supported under Australian Research Council's Earch Council Linkage Infrastructure, Equipment and Facilities scheme (project LE160100025)

Australian Facility For Noble-Gas Radio Isotope Measurements

A new facility for fast and accurate measurements of noble gas radio-nuclide ratios ⁸¹Kr/Kr, ⁸⁵Kr/Kr, ³⁹Ar/Ar

• Environmental markers to study ground and ocean water movement

- Application to water dating:
 - ³⁹Ar, ⁸¹Kr, ⁸⁵Kr[†] are cosmogenic nuclides
 - Nearly ideal physical & chemical characteristics (e.g. unreactive)
 - Well defined input function at water/atmosphere interface

^{†85}Kr atmospheric concentration is primarily due to nuclear fuel reprocessing

Picture credit: Axel Suckow, CSIRO

- Application to water dating:
 - ³⁹Ar, ⁸¹Kr, ⁸⁵Kr[†] are cosmogenic nuclides
 - Nearly ideal physical & chemical characteristics (e.g. unreactive)
 - Well defined input function at water/atmosphere interface

^{†85}Kr atmospheric concentration is primarily due to nuclear fuel reprocessing

Picture credit: Axel Suckow, CSIRO

- Application to water dating:
 - ³⁹Ar, ⁸¹Kr, ⁸⁵Kr[†] are cosmogenic nuclides
 - Nearly ideal physical & chemical characteristics (e.g. unreactive)
 - Well defined input function at water/atmosphere interface
- ° Rarely used due measurement difficulty

^{†85}Kr atmospheric concentration is primarily due to nuclear fuel reprocessing

• Environmental markers to study ground and ocean water movement

Radio-Isotope Measurements

- Measurements difficult due to small atmospheric abundance:
 - ⁸⁵Kr/Kr: 2x10⁻¹¹ ⁸¹Kr/Kr: 5.2x10⁻¹³ ³⁹Ar/Ar: 8x10⁻¹⁶
 - 1L of surface water contains just ~9000 ³⁹Ar atoms & ~1500 ⁸¹Kr atoms
 - Need to measure ratio to ~1% of atmospheric abundance in water dating applications
- Low-level decay counting (LLC) is traditional measurement technique
 - Large water samples required (2000-5000 litres for ³⁹Ar)
 - Long measurement times (8-60 days for ³⁹Ar)
 - Performed where a low background count is present
 - e.g. University of Bern, 35m below ground

Atom Trap Trace Analysis (ATTA)

- Laser-based technique for measuring noble-gas radio-isotope ratios
- Atom-counting rather than decay-counting metaster samples, faster measurement
- Lasers used to cool specific isotope and hold in a magneto-optical trap
- Shifts in energy levels between isotopes permit selection of a single isotope by tuning laser frequencies

Atom Trap Trace Analysis

Based on established laser cooling and magneto-optical trapping

Liquid-N₂

Atom Trap Trace Analysis

- Current ATTA systems worldwide:
 - Argonne National Laboratory, IL, USA
 - Predominantly focussed on Kr measurements
 - Only facility currently open for general samples
 - Throughput ~100 samples / year
 - University of Heidelberg, Germany
 - Initial ³⁹Ar measurements demonstrated
 - University of Science and Technology of China, Hefei, China
 - Developing Kr capability

Performance

- Initial facility will offer ATTA measurements with performance comparable to existing labs
- Upgraded facility will offer reduced sample size and measurement time

	³⁹ Ar			⁸¹ Kr			Total
	ml-STP	Water / L	Time	μl-STP	Water / L	Time	Samples / yr
AMS	-	-	-	400	8000	9 hours	
LLC	~700	~3000	8-60 days	-	-	-	
ATTA Facility - initial	1	5	~12 hours	5	100	~12 hours	100
ATTA Facility - upgraded	0.1	0.5	~5 hours	0.5	10	~5 hours	300

Sample Preparation

- ATTA measurement requires small gas-phase noble-gas sample
 - Mixed noble-gas samples are not a problem due to selectivity of atom-trapping
- CSIRO's Environmental Tracer and Noble Gas Laboratory in Adelaide can
 - Extract noble gases from water samples
 - Extract gas from water in the field, and separate out noble-gas components

Picture credit: Arne Kersting, Axel Suckow, CSIRO

Timeline

Australian Facility For Noble-Gas Radio Isotope Measurements

- Fast, accurate measurements of ⁸¹Kr, ⁸⁵Kr and ³⁹Ar radio-nuclide ratios
- Small sample size requirements (isotope dependent)
- Expected to commence sample measurement late 2017
- Funded through per-sample analysis fee

This facility is supported under Australian Research Council's Linkage Infrastructure, Equipment and Facilities scheme (project LE160100025)

