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Clustering

[D.M. Brink, 1967]

• The 0+6 state in 16O, situated at 15.097 MeV, is a primary
candidate for a Hoyle-analogue state.

• In particular, theoretical predictions suggest that this
state may be a Bose Einstein Condensate.

[P. Schuck et al., Alpha-Particle Condensation in Nuclear Systems,
J. Phys. Conf. Ser. Journal of Physics: Conference Series 413 (2013)]

• There is disagreement between the experimentally observed
width of 166(5) keV and the theoretically calculated width
of 34 keV.

[Y. Funaki et al., Phys. Rev. C 82, 024312 (2010)]
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Figure 2. (a) The energy spectra of inelastic α scattering on SiO2 and Si at 0◦ (b) The energy
spectrum on 16O obtained by subtracting the Si contaminant from the SiO2 spectrum.

outline is provided below. The excitation energy of 12C was determined from the momentum of
a scattered α particle, which was analyzed by the GRAND RAIDEN spectrometer. The decay α
particle from the excited 12C was detected by the silicon detectors (SSD) array, which composed
of fourteen SSDs installed in the scattering chamber at backward angles from 115◦ to 255◦. The
decay α particle was identified by the time of flight method.

From a missing mass spectrum in the 12C(α,α′)12C∗[α + X] reaction, the decay α particles
were classified into two channels. One was the ground state of 8Be (8Begs) channel. The other
was the 8Be2+ channel, although it included the direct 3α decay. Figure 1 shows the coincidence
energy spectrum at 0◦ in the 12C(α,α′)12C[α + X] reaction. The singles energy spectrum (solid
line) in the 12C(α,α′) and 0+ (right hatched area) and 1− (left hatched area) components
obtained from the multipole decomposition analysis (MDA) in Ref. [12] are superimposed onto
the coincidence energy spectra. Open and closed circles show the coincidence energy spectra
with the 8Begs and the 8Be2+ channels, respectively. The solid triangles show the sum of these
two coincidence spectra. Since the scattering plane can not be defined in the 0◦ scattering, the
φ-angle distribution of the α-decay is uniform. Furthermore, assuming the detectors for decay
α particles covered the whole angles, this summed spectrum can reproduce a inclusive spectrum
of the 12C(α,α′) reaction at 0◦. This means the validity that the energy spectrum at 0◦ is
considered to consist of these two components.

3rd International Workshop on “State of the Art in Nuclear Cluster Physics” IOP Publishing
Journal of Physics: Conference Series 569 (2014) 012009 doi:10.1088/1742-6596/569/1/012009
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• 12C(13C,9 Be)16O∗ at 141 MeV

[Haigh et al., J. Phys. G: Nucl. Part. Phys. 37 (2010) 035103]

• 12C(6Li,d)16O∗ at 42 MeV

[Wheldon et al., Phys. Rev. C 83 (2011) 064324]

• 12C(α, α′)12C∗ [α+ X] at 386 MeV

[Itoh et al., Journal of Physics: Conference Series, 569 (2014)]
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The K600 Spectrometer Vault
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• The reaction of interest was 16O(α, α′)
with a beam energy of 200 MeV and a
Li2CO3 target.

• The K600 spectrometer was configured
for a 0◦− 2◦ measurement.

• At 50 MeV/u, the dominating direct
single-step reaction mechanism
predominantly excites
low-spin, natural-parity states.

• The CAKE (Coincidence Array for
K600 Experiments) silicon array was
used to detected coincident charged
particle decays.
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The K600 Spectrometer Vault

Target
Nucleus
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Scattered Beam

Charged Particle Decay

• The reaction of interest was 16O(α, α′)
with a beam energy of 200 MeV and a
Li2CO3 target.

• The K600 spectrometer was configured
for a 0◦− 2◦ measurement.

• At 50 MeV/u, the dominating direct
single-step reaction mechanism
predominantly excites
low-spin, natural-parity states.

• The CAKE (Coincidence Array for
K600 Experiments) silicon array was
used to detected coincident charged
particle decays.
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• V (x, σ,Γ) =
∫∞
−∞G(x′, σ)L(x− x′,Γ)dx′

• R-matrix width: Γi = 2γ2Pl(E)

• Penetrability: Pl(E) = ka
Fl(η,ρ)2+Gl(η,ρ)2

*Only known natural-parity states listed on the NNDC
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The α0 Decay Channel
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Extraction of α0 angular distributions
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To be self-consistent with respect to

total and ring-gated fits:

• The resonance energies (ER’s) are fixed.

• The reduced width parameters (γ’s) are fixed.
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Angular Distributions of Charged Particle Decay
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• Solid-angle correction factors from GEANT4.

• Calculation accounts for the ejectile kinematics

and the spectrometer acceptance (0◦− 2◦):

code to relativistically transform the calculations

from the recoil to the lab inertial reference frame.

• CHUCK3: Differential cross section calculation.

• ANGCOR: Calculation of the m-state population

ratios and the associated particle decay.

K.C.W. Li Refuting the Nature of the 0+6 Hoyle-analogue State Candidate in 16O



Introduction
Results

Conclusions

Singles
Coincident Decay Events
Angular Distributions

Angular Distributions of decay from 16O at Ex ≈ 15.1 MeV

 [deg]θ

125 130 135 140 145 150 155 160 165

)
θ(

W

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)+C (212 → O
16  :

1
α

= 15.090(1) MeV 
R

E

 [deg]θ

110 120 130 140 150 160 170

)
θ(

W

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)
+

C (0
12 → O

16  :
0

α

= 15.046(3) MeV 
R

E

• The angular distribution of the α1 decay observed

at Ex ≈ 15.1 MeV is distinctly isotropic.

• Isotropic α1 decay can only originate from a

Jπ = 0+ or 2+ resonance/state.

• L = 0 , L = 1 , L = 2 , L = 3.

• L = 1 + L = 5 : An incoherent sum with fitted

contributions.

• The angular distribution of the α0 decay observed

at Ex ≈ 15.1 MeV is distinctly anisotropic.

• The calculated angular distributions of α0 decay

from Jπ = 0+, 1−, 2+, 3−, 4+, 5− resonances at

Ex ≈ 15.1 MeV do not yield satisfactory fits.
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Resonance energies of α0, α1 and p0 decay at Ex ≈ 15 MeV
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Ex ≈ 15 MeV: p0 decay
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• Assuming a single 2+ resonance at ER = 14.926(2), the

extracted widths from the inclusive and the p0-gated

spectra are inconsistent.

• This is indicative of a previously unidentified resonance.
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Ex ≈ 15 MeV: α0 and α1 decay
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Conclusions

• The data suggests that the resonance, previously observed at 15.097 MeV and
identified as the 0+6 resonance in 16O, has a contribution from a non-zero spin
resonance.

• A previously unidentified resonance may explain the disagreement between the
experimentally observed width of 166(5) keV (162(4) keV for this work) and the
theoretically calculated width of 34 keV.

[Y. Funaki et al., Phys. Rev. C 82, 024312 (2010)]

• This unidentified resonance may be interpreted to be consistent with the data
from Itoh et al., Journal of Physics: Conference Series, 569 (2014).
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• The prominently observed α0 decay modes from

several Jπ = 0+ states exhibit clear isotropy.

• The solid angle correction factors for the data are

well understood through a GEANT4 simulation.

• The branching ratio of the Jπ = 0+ resonance

observed at Ex = 12.049(2) is calculated to be

Bα0 = 96(3)%, which is in agreement with the

literature value of Bα = 100.

*Resonance is not well resolved
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