

The INPC 2016

Refuting the Nature of the Sixth 0+Hoyle-analogue State Candidate in ¹⁶O

<u>K.C.W. Li</u>^{1,2} P. Adsley^{1,2} R. Neveling² P. Papka^{1,2}
F.D. Smit² J.W. Brummer¹ C. Aa. Diget⁷
Z. Dyers² M. Freer³ Tz. Kokalova³ N.Y. Kheswa²
F. Nemulodi^{1,2} L. Pelligri^{2,6} B. Rebeiro⁴
J.A. Swartz⁵ S. Triambak^{2,4} C. Wheldon³

¹Department of Physics, University of Stellenbosch, Stellenbosch 7600, South Africa
²iThemba Laboratory for Accelerator Based Sciences, South Africa
³School of Physics and Astronomy, University of Birmingham, Edgbaston Birmingham, B15 2TT, United Kingdom
⁴Department of Physics, University of the Western Cape, P/B X17, Belleville ZA-7535, South Africa
⁵Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium
⁶University of the Witwatersrand, Johannesburg Wits 2050, South Africa
⁷Department of Physics, University of York, York, United Kingdom

 16^{th} of September 2016

Clustering Experimental Apparatus and Technique

Clustering

[D.M. Brink, 1967]

- The 0_6^+ state in ¹⁶O, situated at 15.097 MeV, is a primary candidate for a Hoyle-analogue state.
- In particular, theoretical predictions suggest that this state may be a Bose Einstein Condensate.

[P. Schuck et al., Alpha-Particle Condensation in Nuclear Systems,J. Phys. Conf. Ser. Journal of Physics: Conference Series 413 (2013)]

• There is disagreement between the experimentally observed width of 166(5) keV and the theoretically calculated width of 34 keV.

[Y. Funaki et al., Phys. Rev. C 82, 024312 (2010)]

Clustering Experimental Apparatus and Technique

Previous Results

K.C.W. Li Refuting the Na

Refuting the Nature of the 0_6^+ Hoyle-analogue State Candidate in ${}^{16}O$

Clustering Experimental Apparatus and Technique

The K600 Spectrometer Vault

- The reaction of interest was ¹⁶O(α, α') with a beam energy of 200 MeV and a Li₂CO₃ target.
- The K600 spectrometer was configured for a $0^{\circ}-2^{\circ}$ measurement.
- At 50 MeV/u, the dominating direct single-step reaction mechanism predominantly excites low-spin, natural-parity states.
- The CAKE (Coincidence Array for K600 Experiments) silicon array was used to detected coincident charged particle decays.

Clustering Experimental Apparatus and Technique

The K600 Spectrometer Vault

- The reaction of interest was ${}^{16}O(\alpha, \alpha')$ with a beam energy of 200 MeV and a Li_2CO_3 target.
- The K600 spectrometer was configured for a $0^{\circ}-2^{\circ}$ measurement.
- At 50 MeV/u, the dominating direct single-step reaction mechanism predominantly excites low-spin, natural-parity states.
- The CAKE (Coincidence Array for K600 Experiments) silicon array was used to detected coincident charged particle decays.

Singles Coincident Decay Events Angular Distributions

Singles

K.C.W. Li

Refuting the Nature of the 0_6^+ Hoyle-analogue State Candidate in ${}^{16}O$

Introduction Single Results Coinc Conclusions Angu

Singles Coincident Decay Events Angular Distributions

Coincidence matrix (gated on higher angles)

 $\alpha_0 \text{ decay from low-spin natural-parity states}$

Introduction

Singles

K.C.W. Li Refuting the Nature of the 0_6^+ Hoyle-analogue State Candidate in 16 O

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_1 Decay Channel

K.C.W. Li Refuting the Nature of the 0_6^+ Hoyle-analogue State Candidate in 16 O

Singles Coincident Decay Events Angular Distributions

The p_0 Decay Channel

IntroductionSinglesResultsCoincident Decay EventsConclusionsAngular Distributions

Extraction of α_0 angular distributions

IntroductionSinglesResultsCoincident Decay EventsConclusionsAngular Distributions

Extraction of α_0 angular distributions

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

K.C.W. Li Refuting the Nature of the 0_6^+ Hoyle-analogue State Candidate in 16 O

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

Singles Coincident Decay Events Angular Distributions

The α_0 Decay Channel

IntroductionSinglesResultsCoincident Decay EventsConclusionsAngular Distributions

Angular Distributions of Charged Particle Decay

IntroductionSinglesResultsCoincident Decay EventsConclusionsAngular Distributions

Angular Distributions of decay from ¹⁶O at $E_x \approx 15.1$ MeV

Singles Coincident Decay Events Angular Distributions

 $E_x \approx 15 \text{ MeV: } p_0 \text{ decay}$

Singles Coincident Decay Events Angular Distributions

 $E_x \approx 15$ MeV: α_0 and α_1 decay

Refutation of the 15.097 MeV 0_6^+ state in ${}^{16}O$ Acknowledgements

Conclusions

- The data suggests that the resonance, previously observed at 15.097 MeV and identified as the 0_6^+ resonance in ¹⁶O, has a contribution from a non-zero spin resonance.
- A previously unidentified resonance may explain the disagreement between the experimentally observed width of 166(5) keV (162(4) keV for this work) and the theoretically calculated width of 34 keV.

[Y. Funaki et al., Phys. Rev. C 82, 024312 (2010)]

• This unidentified resonance may be interpreted to be consistent with the data from Itoh *et al.*, Journal of Physics: Conference Series, 569 (2014).

K.C.W. Li

Refuting the Nature of the 0_6^+ Hoyle-analogue State Candidate in ${}^{16}O$

Refutation of the 15.097 MeV 0_6^+ state in ¹⁶O Acknowledgements

Acknowledgements

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

UNIVERSITEIT Stellenbosch University

- The NRF and the DST (NEP UID 86052 grant) for financially supporting this project.
- The accelerator team and workshop staff at iThemba LABS for the excellent beam and apparatus manufacturing.
- Patriot Technologies Inc. and Intel for the support of computational equipment.
- Prof. M.N. Harakeh for his correspondence which assisted the calculation of the theoretical angular distributions of decay.

Refutation of the 15.097 MeV 0_6^+ state in ¹⁶O Acknowledgements

Angular Distributions of Charged Particle Decay

Refutation of the 15.097 MeV 0_6^+ state in ¹⁶O Acknowledgements

Coincidence matrix

K.C.W. Li Refuting the Nature of the 0_6^+ Hoyle-analogue State Candidate in 16 O

Refutation of the 15.097 MeV 0_6^+ state in ¹⁶O Acknowledgements

Angular Distributions of Charged Particle Decay

Refutation of the 15.097 MeV 0_6^+ state in ¹⁶O Acknowledgements

Coincidence matrix - Gated on Ring 1 of CAKE

Refutation of the 15.097 MeV 0_6^+ state in ¹⁶O Acknowledgements

Coincidence matrix - Gated on Ring 8 of CAKE

Refutation of the 15.097 MeV 0_6^+ state in ¹⁶O Acknowledgements

Coincidence matrix - Gated on Ring 16 of CAKE

