Study of high lying resonances in ⁹Be by the measurement of (p,p), (p,d) and (p,α) reactions

Alinka Lépine-Szily, and the RIBRAS collaboration

International Nuclear Physics Conference Adelaide Convention Centre, Australia 11-16 September 2016

Tandem Accelerator – Pelletron 8UD at the University of São Paulo - Brazil

primary beams:^{6,7}Li, ^{10,11}B, ⁹Be, ¹²C, ^{16,17,18}O ...

3.0 – 5.0 MeV/nucleon

What is the interest of these light radioactive nuclei??

Light drip line nuclei

⁶He borromean, twoneutron halo nucleus

Measurements with purified radioactive beams:

Elastic scattering and transfer reactions of ⁸Li on hydrogen target

Nuclear states with excited cores and with cluster structures: 2,3..

Study of ⁹Be structure through ⁸Li+p reactions ⁷Li+d ⁸Li+p

- Probes ⁹Be around $E\downarrow x \approx 18-20$ MeV
- High excitation energies in ⁹Be
 - \rightarrow unknown states
 - \rightarrow level density important
 - \rightarrow several open channels

$\alpha + \alpha + n$

Method: Inverse kinematics: ⁸Li beam hitting a thick (7.7 mg/cm²) [CH₂]_n target ⁸Li beam looses energy, stops in the target

Simultaneous measurement of all incident energies: excitation function Resonances populated in the target \rightarrow peaks in energy spectrum of light ejectiles Energy spectrum of ⁴He, p, d \rightarrow excitation function of reactions Energy resolution: independent of beam dispersion, depends on energy loss of light ejectiles in target Normalization; Rutherford scattering of ⁸Li on Au target

2009-2011 ⁸Li(p.α) ⁵He. one solenoid. Q=+14.42 MeV,

PHYSICAL REVIEW C 86, 064321 (2012)

The ⁸Li(p, α)⁵He reaction at low energies, and ⁹Be spectroscopy around the proton threshold

9

⁸Li(p, α)⁵He at 13,5°

⁸Li(p,p)⁸Li at 18^o

Broad resonance at E_{cm} ~1.7MeV, observed in (p, α) and (p,p). In (p,d) it populates both ⁷Li_{qs} and ⁷Li*(0.477 MeV).

The resonance at Ecm ~ 1.7 MeV decays to $d + {}^{7}Li_{gs}$ and ${}^{7}Li^{*}$ (0,477MeV). At 10° the peak of $d + {}^{7}Li_{gs}$ was covered by a contamination

R-matrix calculation

Procedure:

- 1. Inputs for each resonance: $J, I, \ell, E \downarrow 0$, $\gamma \downarrow p$, $\gamma \downarrow \alpha$, $\gamma \downarrow d$
- 2. Calculation of the R-matrix for each J values
- 3. From R-matrices: calculation of the scattering matrices U_J for each J
- 4. From the scattering matrices U_J : elastic and transfer cross sections

Several reactions with the same entrance channel \rightarrow constrains Energy $E\downarrow 0$, proton width $\gamma \downarrow p$ are common \rightarrow constrains

Conclusions

- The simultaneous measurement of resonant elastic scattering ⁸Li(p,p)⁸Li, and transfer reactions ⁸Li(p,α)⁵He and ⁸Li(p,d)⁷Li, allows to determine the resonance parameters of highly excited states in ⁹Be.
- 5 resonances, at E_{cm} = at 0.42, 0.61, 1.10,1.66 and 1.72 MeV have E_R , J^{π} and partial widths Γ_p , Γ_α , Γ_d , Γ_d , determined
- Future measurements: extend the energy range and measure angular distributions
- Study other systems ⁶He+p, ⁸B+p, ⁷Be+p

RIBRAS COLLABORATION

Universidade de São Paulo, IFUSP R. Lichtenthäler F^o, A. Lépine-Szily, V.Guimarães, M. A. Gonzalez Alvarez, K.C.C. Pires, V.Scarduelli, E.Leistenschneider, S. Appannababu, L.Gasques, G. A. Scotton, U. U. da Silva Université Libre de Bruxelles P. Descouvemont Universidad de Sevilla, Espanha M. Rodríguez-Gallardo, A.M. Moro Laboratorio Tandar, Buenos Aires, Argentina A. Arazi CEADEN. Havana. Cuba I.Padron, Instituto de Pesquisas Energeticas e Nucleares (IPEN) J.M.B. Shorto Universidade Federal Fluminense (UFF) P.R.S. Gomes, J. Lubian, P. N. de Faria, D. R. Mendes, R. Pampa Condori, M.C. Morais Universidade Federal de São Paulo (UNIFESP) M. Assunção Universidade Federal Rural do Rio de Janeiro (UFRRJ) V. Morcelle Universidade Federal da Bahia (UFBA) A. Barioni University of Notre Dame, EUA J. Kolata 17 Faculty of Science. The M.S. University of Baroda. India Suriit Mukheriee

In memoriam of our dear colleague and friend Paulo Gomes. Rest in peace

~1980

