New Results on the Structure of Baryons and their Excitations from Lattice QCD

Derek Leinweber

In collaboration with: Jonathan Hall, Waseem Kamleh, Adrian Kiratidis, Zhan-Wei Liu, Ben Menadue, Ben Owen, Tony Thomas, Jia-Jun Wu, Ross Young

Outline

Lattice QCD Baryon Spectra at light quark masses $\Lambda(1405)$, $N^*(1535)$, $N^*(1650)$ and N'(1440) Resonances

Wave Functions of Nucleon Excitations

Isolation of the $\Lambda(1405)$ in Lattice QCD

Evidence the $\Lambda(1405)$ is a $\overline{K}N$ molecule

Hamiltonian Effective Field Theory Description of Spectra

The nature of the low-lying N Spectrum

Conclusions

• Adrian Kiratidis on Five-Quark Operators: Tuesday, R6, 2:40

- Adrian Kiratidis on Five-Quark Operators: Tuesday, R6, 2:40
- Ryan Bignell on Nucleon Polarizabilities: Friday, C1, 11:10

- Adrian Kiratidis on Five-Quark Operators: Tuesday, R6, 2:40
- Ryan Bignell on Nucleon Polarizabilities: Friday, C1, 11:10
- Zhan-Wei Liu on Hamiltonian Effective Field Theory: Friday, C1, 11:25

- Adrian Kiratidis on Five-Quark Operators: Tuesday, R6, 2:40
- Ryan Bignell on Nucleon Polarizabilities: Friday, C1, 11:10
- Zhan-Wei Liu on Hamiltonian Effective Field Theory: Friday, C1, 11:25
- Jonathan Hall on the magnetic moment of the $\Lambda(1405)$, Friday, C1, 12:10

- Adrian Kiratidis on Five-Quark Operators: Tuesday, R6, 2:40
- Ryan Bignell on Nucleon Polarizabilities: Friday, C1, 11:10
- Zhan-Wei Liu on Hamiltonian Effective Field Theory: Friday, C1, 11:25
- Jonathan Hall on the magnetic moment of the $\Lambda(1405)$, Friday, C1, 12:10
- Finn Stokes on Excited State Form Factors: Immediately following this talk.

Based on the PACS-CS (2 + 1)-flavour ensembles, available through the ILDG. S. Aoki *et al* (PACS-CS Collaboration), Phys. Rev. D **79**, 034503 (2009)

Based on the PACS-CS (2 + 1)-flavour ensembles, available through the ILDG. S. Aoki *et al* (PACS-CS Collaboration), Phys. Rev. D **79**, 034503 (2009)

• Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.

Based on the PACS-CS (2 + 1)-flavour ensembles, available through the ILDG. S. Aoki *et al* (PACS-CS Collaboration), Phys. Rev. D **79**, 034503 (2009)

- Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.
- 5 pion masses, ranging from 640 MeV down to 156 MeV.

CSSM Simulation Details

Based on the PACS-CS (2 + 1)-flavour ensembles, available through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.
- 5 pion masses, ranging from 640 MeV down to 156 MeV.
- The strange quark κ_s is held fixed as the light quark masses vary.
 - Changes in the strange quark contributions are environmental effects.

Positive Parity Nucleon Spectrum: CSSM

Comparison: Hadron Spectrum Collaboration (HSC)

 "Excited state baryon spectroscopy from lattice QCD,"
 R. G. Edwards, J. J. Dudek, D. G. Richards and S. J. Wallace, Phys. Rev. D 84 (2011) 074508 arXiv:1104.5152 [hep-ph].

CSSM & HSC Comparison: Positive Parity CSSM

CSSM & HSC Comparison: Positive Parity

CSSM & HSC Comparison: Negative Parity CSSM

CSSM & HSC Comparison: Negative Parity

Further Information

- "Roper Resonance in 2+1 Flavor QCD," M. S. Mahbub, *et al.* [CSSM], Phys. Lett. B **707** (2012) 389 arXiv:1011.5724 [hep-lat],
- "Low-lying Odd-parity States of the Nucleon in Lattice QCD," M. Selim Mahbub, *et al.* [CSSM], Phys. Rev. D Rapid Comm. **87** (2013) 011501, arXiv:1209.0240 [hep-lat]
- "Structure and Flow of the Nucleon Eigenstates in Lattice QCD,"
 M. S. Mahbub, *et al.* [CSSM],
 Phys. Rev. D 87 (2013) 9, 094506
 arXiv:1302.2987 [hep-lat].

Wave Functions of Positive-Parity Nucleons

d-quark probability density in ground state proton (CSSM)

Comparison with the Simple Quark Model - CSSM

Finite-Volume Effects in Wave Functions

Finite-Volume Effect in $\mathit{N}=2$ excited state: $\mathit{m}_{\pi}=702$ MeV

Finite-Volume Effect in $\mathit{N}=2$ excited state: $\mathit{m}_{\pi}=570$ MeV

Finite-Volume Effect in $\mathit{N}=2$ excited state: $\mathit{m}_{\pi}=411$ MeV

Finite-Volume Effect in N=2 excited state: $m_{\pi}=296$ MeV

Finite-Volume Effect in $\mathit{N}=2$ excited state: $\mathit{m}_{\pi}=156$ MeV

d-quark probability density in 1st excited state of proton (CSSM)

d-quark probability density in 4th excited state of proton (CSSM)

PHYS <i>particles, fie</i> Highlights	ICAL F Ids, gravitati Recent	REVIEW	/ D blogy Authors	Referees	Search	About	٣	
Kaleidoscope				From the Nucleon e Dale S. Re Phys. Rev	e article: xxited state 1 oberts, Wase r. D 89, 0745	wave functi em Kamler 01 (2014)	ons from lattice QCD , and Derek B. Leinweber	

Our 2012 work successfully isolated three low-lying odd-parity spin-1/2 states.

B. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

- An extrapolation of the trend of the lowest state reproduces the mass of the $\Lambda(1405).$
- Subsequent studies have confirmed these results.

G. P. Engel, C. B. Lang, A. Schäfer, Phys. Rev. D 87, 034502 (2013)

$\Lambda(1405)$ and Baryon Octet dominated states

Operators Used in $\Lambda(1405)$ Analysis

We consider local three-quark operators with the correct quantum numbers for the Λ channel, including

• Flavour-octet operators

$$\chi_1^8 = \frac{1}{\sqrt{6}} \varepsilon^{abc} \left(2(u^a C \gamma_5 d^b) s^c + (u^a C \gamma_5 s^b) d^c - (d^a C \gamma_5 s^b) u^c \right)$$
$$\chi_2^8 = \frac{1}{\sqrt{6}} \varepsilon^{abc} \left(2(u^a C d^b) \gamma_5 s^c + (u^a C s^b) \gamma_5 d^c - (d^a C s^b) \gamma_5 u^c \right)$$

• Flavour-singlet operator

$$\chi^{1} = 2\varepsilon^{abc} \left((u^{a}C\gamma_{5}d^{b})s^{c} - (u^{a}C\gamma_{5}s^{b})d^{c} + (d^{a}C\gamma_{5}s^{b})u^{c} \right)$$

• Consideration of 16 and 100 sweeps of gauge-invariant Gaussian smearing provides a 6×6 correlation matrix. ^{34 of 115}

Flavour structure of the $\Lambda(1405)$

The importance of eigenstate isolation (red)

Probing with the electromagnetic current

Only the projected correlator has acceptable χ^2/dof

Is the $\Lambda(1405)$ really exotic?

Strange Magnetic Form Factor of the $\Lambda(1405)$

• Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - A u, \overline{u} pair making a $\underline{K}^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - A u, \overline{u} pair making a $\underline{K}^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- Thus, the strange quark does not contribute to the magnetic form factor of the $\Lambda(1405)$ when it is dominated by a $\overline{K}N$ molecule.

${\cal G}_M$ for the A(1405) at $Q^2 \sim 0.16 \, { m GeV}^2$

${\cal G}_M$ for the A(1405) at $Q^2 \sim 0.16\,{ m GeV}^2$

time

• J. M. M. Hall, et al. [CSSM]

"Lattice QCD Evidence that the $\Lambda(1405)$ Resonance is an Antikaon Nucleon Molecule" Phys. Rev. Lett. **114**, 132002 (2015), arXiv:1411.3402 [hep-lat]

- J. M. M. Hall, *et al.* [CSSM] "Lattice QCD Evidence that the Λ(1405) Resonance is an Antikaon Nucleon Molecule" Phys. Rev. Lett. **114**, 132002 (2015), arXiv:1411.3402 [hep-lat]
- Z. W. Liu, J. M. M. Hall, DBL, A. W. Thomas and J. J. Wu. "Structure of the $\Lambda(1405)$ from Hamiltonian effective field theory" arXiv:1607.05856 [nucl-th]

- J. M. M. Hall, *et al.* [CSSM] "Lattice QCD Evidence that the Λ(1405) Resonance is an Antikaon Nucleon Molecule" Phys. Rev. Lett. **114**, 132002 (2015), arXiv:1411.3402 [hep-lat]
- Z. W. Liu, J. M. M. Hall, DBL, A. W. Thomas and J. J. Wu. "Structure of the Λ(1405) from Hamiltonian effective field theory" arXiv:1607.05856 [nucl-th]
- Z. W. Liu, W. Kamleh, DBL, F. M. Stokes, A. W. Thomas and J. J. Wu, "Hamiltonian EFT study of the *N**(1535) resonance in lattice QCD," Phys. Rev. Lett. **116** (2016) 082004, [arXiv:1512.00140 [hep-lat]]

- J. M. M. Hall, *et al.* [CSSM] "Lattice QCD Evidence that the Λ(1405) Resonance is an Antikaon Nucleon Molecule" Phys. Rev. Lett. **114**, 132002 (2015), arXiv:1411.3402 [hep-lat]
- Z. W. Liu, J. M. M. Hall, DBL, A. W. Thomas and J. J. Wu. "Structure of the $\Lambda(1405)$ from Hamiltonian effective field theory" arXiv:1607.05856 [nucl-th]
- Z. W. Liu, W. Kamleh, DBL, F. M. Stokes, A. W. Thomas and J. J. Wu, "Hamiltonian EFT study of the N*(1535) resonance in lattice QCD," Phys. Rev. Lett. 116 (2016) 082004, [arXiv:1512.00140 [hep-lat]]
- Z. W. Liu, W. Kamleh, DBL, F. M. Stokes, A. W. Thomas and J. J. Wu, "Hamiltonian EFT study of the N*(1440) resonance in lattice QCD," arXiv:1607.04536 [nucl-th] ^{43 of 115}

• Consider the $\Lambda(1405)$.

- Consider the $\Lambda(1405)$.
- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are considered: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.

- Consider the $\Lambda(1405)$.
- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are considered: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- A single-particle state with bare mass, $m_0 + \alpha_0 m_\pi^2$ is also included.

- Consider the $\Lambda(1405)$.
- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are considered: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- A single-particle state with bare mass, $m_0 + \alpha_0 m_\pi^2$ is also included.
- In a finite periodic volume, momentum is quantised to $n(2\pi/L)$.

- Consider the $\Lambda(1405)$.
- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are considered: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- A single-particle state with bare mass, $m_0 + \alpha_0 m_\pi^2$ is also included.
- In a finite periodic volume, momentum is quantised to $n(2\pi/L)$.
- Working on a cubic volume of extent *L* on each side, it is convenient to define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \, \frac{2\pi}{L} \, ,$$

with $n_i = 0, 1, 2, \ldots$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

Hamiltonian model, H_0

Denoting each meson-baryon energy by $\omega_{MB}(k_n) = \omega_M(k_n) + \omega_B(k_n)$, with $\omega_A(k_n) \equiv \sqrt{k_n^2 + m_A^2}$, the non-interacting Hamiltonian takes the form

Hamiltonian model, H_I

• Interaction entries describe the coupling of the single-particle state to the two-particle meson-baryon states.

Hamiltonian model, H_I

- Interaction entries describe the coupling of the single-particle state to the two-particle meson-baryon states.
- Each entry represents the S-wave interaction energy of the $\Lambda(1405)$ with one of the four channels at a certain value for k_n .

Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + lpha_0 m_\pi^2 - \sum_{M,B} \sum_{n=0}^\infty rac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda} \, .$$

with λ denoting the energy eigenvalue.

Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + lpha_0 m_\pi^2 - \sum_{M,B} \sum_{n=0}^\infty \frac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda} \,.$$

with λ denoting the energy eigenvalue.

- As λ is finite, the pole in the denominator of the right-hand side is never accessed.
- The bare mass and the free meson-baryon energies encounter self-energy corrections that lead to avoided level-crossings in the finite-volume energy eigenstates.

Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + lpha_0 m_\pi^2 - \sum_{M,B} \sum_{n=0}^\infty rac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda} \, .$$

with λ denoting the energy eigenvalue.

- As λ is finite, the pole in the denominator of the right-hand side is never accessed.
- The bare mass and the free meson-baryon energies encounter self-energy corrections that lead to avoided level-crossings in the finite-volume energy eigenstates.
- Reference to chiral effective field theory provides the form of $g_{MB}(k_n)$.

• Flavour-singlet couplings between the bare state and the meson-baryon states are constrained by SU(3)-flavour symmetry and the width of the $\Lambda(1405)$ resonance.

- Flavour-singlet couplings between the bare state and the meson-baryon states are constrained by SU(3)-flavour symmetry and the width of the $\Lambda(1405)$ resonance.
- The eigenvalues and eigenvectors of *H* are obtained via the LAPACK software library.

- Flavour-singlet couplings between the bare state and the meson-baryon states are constrained by SU(3)-flavour symmetry and the width of the $\Lambda(1405)$ resonance.
- The eigenvalues and eigenvectors of *H* are obtained via the LAPACK software library.
- The bare mass parameters m_0 and α_0 are determined by a fit to the lattice QCD results.

Hamiltonian model fit

Avoided Level Crossing

Energy eigenstate, $|E\rangle$, basis $|state\rangle$ composition

Hamiltonian model. H₁

Our approach included a bare state dressed by flavour-singlet coupled meson-baryon

 $H_{I} = \begin{pmatrix} 0 & g_{\pi\Sigma}(k_{0}) & \cdots & g_{\eta\Lambda}(k_{0}) & g_{\pi\Sigma}(k_{1}) & \cdots & g_{\eta\Lambda}(k_{1}) \cdots \\ g_{\pi\Sigma}(k_{0}) & 0 & \cdots & \\ \vdots & \vdots & 0 \\ g_{\eta\Lambda}(k_{0}) & & \ddots & \\ g_{\pi\Sigma}(k_{1}) & & \vdots \\ g_{\eta\Lambda}(k_{1}) & & \vdots \\ \vdots & & & & & \\ \vdots & & & & & \\ \end{pmatrix}$

Hamiltonian model. H_{I}

Our approach included a bare state dressed by flavour-singlet coupled meson-baryon

 $H_{l} = \begin{pmatrix} 0 & g_{\pi\Sigma}(k_{0}) & \cdots & g_{\eta\Lambda}(k_{0}) & g_{\pi\Sigma}(k_{1}) & \cdots & g_{\eta\Lambda}(k_{1}) \cdots \\ g_{\pi\Sigma}(k_{0}) & 0 & \cdots & \vdots & \vdots & 0 \\ g_{\eta\Lambda}(k_{0}) & & \ddots & \vdots & \\ g_{\pi\Sigma}(k_{1}) & & \ddots & \\ \vdots & & \vdots & g_{\eta\Lambda}(k_{1}) \\ \vdots & & & \vdots & \\ g_{\eta\Lambda}(k_{1}) & & & \vdots & \\ \vdots & & & & \\ \vdots & & & & \\ \end{bmatrix}$

- Ironically, most analyses omit these interactions and instead include only the direct meson-baryon to meson-baryon interactions
 - Weinberg-Tomozawa terms

The two-pole description of the $\Lambda(1405)$

Raquel Molina and Michael Doring, arXiv:1512.05831 [hep-lat]

• We use the potential derived from Weinberg-Tomozawa term

$$V_{lpha,eta}^{\prime}(k,k') = rac{g_{lpha,eta}^{\prime}}{8\pi^2 f_{\pi}^2} \, rac{\omega_{lpha_M}(k) + \omega_{eta_M}(k')}{\sqrt{2\omega_{lpha_M}(k)} \, \sqrt{2\omega_{eta_M}(k')}} \, u(k) \, u(k') \, .$$

• We use the potential derived from Weinberg-Tomozawa term

$$V_{\alpha,\beta}^{\prime}(k,k') = rac{g_{\alpha,\beta}^{\prime}}{8\pi^2 f_{\pi}^2} \, rac{\omega_{lpha_M}(k) + \omega_{eta_M}(k')}{\sqrt{2\omega_{lpha_M}(k)} \, \sqrt{2\omega_{eta_M}(k')}} \, u(k) \, u(k') \, .$$

• Dipole regulator functions u(k) have a fixed scale of $\Lambda = 1$ GeV.

• We use the potential derived from Weinberg-Tomozawa term

$$V_{lpha,eta}^{\prime}(k,k^{\prime}) = rac{m{g}_{lpha,eta}^{\prime}}{8\pi^{2}f_{\pi}^{2}} \, rac{\omega_{lpha_{M}}(k) + \omega_{eta_{M}}(k^{\prime})}{\sqrt{2\omega_{lpha_{M}}(k)} \, \sqrt{2\omega_{eta_{M}}(k^{\prime})}} \, u(k) \, u(k^{\prime}) \, .$$

- Dipole regulator functions u(k) have a fixed scale of $\Lambda = 1$ GeV.
- Couplings vanishing in the SU(3)-flavour symmetry limit are not considered.

Direct two-to-two particle interactions

• Eight non-trivial couplings are constrained by experimental data in infinite volume.

$$g^0_{\pi\Sigma,\pi\Sigma}, g^0_{\bar{K}N,\bar{K}N}, g^0_{\bar{K}N,\pi\Sigma}, g^0_{H}, g^1_{\pi\Sigma,\pi\Sigma}, g^1_{\bar{K}N,\bar{K}N}, g^1_{\bar{K}N,\pi\Sigma}, g^1_{\bar{K}N,\pi\Lambda},$$

with SU(3) flavour symmetry constraints for the heavier $\eta\Lambda$ and $K\Xi$ channels

$$g^{0}_{\bar{K}N,\eta\Lambda} = -3/\sqrt{2} g^{0}_{H}, \quad g^{0}_{\pi\Sigma,K\Xi} = -\sqrt{3/2} g^{0}_{H}, \\ g^{0}_{\eta\Lambda,K\Xi} = 3/\sqrt{2} g^{0}_{H}, \qquad g^{0}_{K\Xi,K\Xi} = -3 g^{0}_{H}.$$
(1)

Direct two-to-two particle interactions

• Eight non-trivial couplings are constrained by experimental data in infinite volume.

$$g^0_{\pi\Sigma,\pi\Sigma}, g^0_{\bar{K}N,\bar{K}N}, g^0_{\bar{K}N,\pi\Sigma}, g^0_{H}, g^1_{\pi\Sigma,\pi\Sigma}, g^1_{\bar{K}N,\bar{K}N}, g^1_{\bar{K}N,\pi\Sigma}, g^1_{\bar{K}N,\pi\Lambda},$$

with SU(3) flavour symmetry constraints for the heavier $\eta\Lambda$ and $K\Xi$ channels

$$g^{0}_{\bar{K}N,\eta\Lambda} = -3/\sqrt{2} g^{0}_{H}, \quad g^{0}_{\pi\Sigma,K\Xi} = -\sqrt{3/2} g^{0}_{H}, \\ g^{0}_{\eta\Lambda,K\Xi} = 3/\sqrt{2} g^{0}_{H}, \qquad g^{0}_{K\Xi,K\Xi} = -3 g^{0}_{H}.$$
(1)

• Finite volume spectrum is then a prediction.

Couplings Constrained by Experiment

Finite Volume Λ Spectrum for L = 3 fm

Comparison with $U\chi PT$

Raquel Molina and Michael Doring, arXiv:1512.05831 [hep-lat]

- Dipole regulator functions u(k) have a fixed scale of $\Lambda = 1$ GeV.
- Same eight two-to-two particle couplings are considered

$$g^0_{\pi\Sigma,\pi\Sigma}, \ g^0_{\bar{K}N,\bar{K}N}, \ g^0_{\bar{K}N,\pi\Sigma}, \ g^0_{H}, \ g^1_{\pi\Sigma,\pi\Sigma}, \ g^1_{\bar{K}N,\bar{K}N}, \ g^1_{\bar{K}N,\pi\Sigma}, \ g^1_{\bar{K}N,\pi\Lambda},$$

- Dipole regulator functions u(k) have a fixed scale of $\Lambda = 1$ GeV.
- · Same eight two-to-two particle couplings are considered

$$g^0_{\pi\Sigma,\pi\Sigma}, \ g^0_{\bar{K}N,\bar{K}N}, \ g^0_{\bar{K}N,\pi\Sigma}, \ g^0_{H}, \ g^1_{\pi\Sigma,\pi\Sigma}, \ g^1_{\bar{K}N,\bar{K}N}, \ g^1_{\bar{K}N,\pi\Sigma}, \ g^1_{\bar{K}N,\pi\Lambda},$$

• Five new parameters describing bare to two-particle interactions are introduced

$$m_B^0, \ g^0_{\pi\Sigma,B_0}, \ g^0_{\bar{K}N,B_0}, \ g^0_{\eta\Lambda,B_0}, \ g^0_{\kappa\Xi,B_0},$$

- Dipole regulator functions u(k) have a fixed scale of $\Lambda = 1$ GeV.
- · Same eight two-to-two particle couplings are considered

$$g^0_{\pi\Sigma,\pi\Sigma}, \ g^0_{\bar{K}N,\bar{K}N}, \ g^0_{\bar{K}N,\pi\Sigma}, \ g^0_{H}, \ g^1_{\pi\Sigma,\pi\Sigma}, \ g^1_{\bar{K}N,\bar{K}N}, \ g^1_{\bar{K}N,\pi\Sigma}, \ g^1_{\bar{K}N,\pi\Lambda},$$

· Five new parameters describing bare to two-particle interactions are introduced

$$m_B^0, \ g^0_{\pi\Sigma,B_0}, \ g^0_{\bar{K}N,B_0}, \ g^0_{\eta\Lambda,B_0}, \ g^0_{\kappa\Xi,B_0},$$

• These 13 parameters are constrained by experimental data.

- Dipole regulator functions u(k) have a fixed scale of $\Lambda = 1$ GeV.
- · Same eight two-to-two particle couplings are considered

$$g^0_{\pi\Sigma,\pi\Sigma}, \ g^0_{\bar{K}N,\bar{K}N}, \ g^0_{\bar{K}N,\pi\Sigma}, \ g^0_{H}, \ g^1_{\pi\Sigma,\pi\Sigma}, \ g^1_{\bar{K}N,\bar{K}N}, \ g^1_{\bar{K}N,\pi\Sigma}, \ g^1_{\bar{K}N,\pi\Lambda},$$

• Five new parameters describing bare to two-particle interactions are introduced

$$m_B^0, \ g^0_{\pi\Sigma,B_0}, \ g^0_{\bar{K}N,B_0}, \ g^0_{\eta\Lambda,B_0}, \ g^0_{\kappa\Xi,B_0},$$

- These 13 parameters are constrained by experimental data.
- A linear quark mass dependence for the bare mass is constrained by the lattice results.

Couplings and m_B^0 Constrained by Experiment

Couplings and m_B^0 Constrained by Experiment

I = 0 Parameters		No Bare State	With Bare State
$g^0_{\pi\Sigma,\pi\Sigma}$		-1.77	-1.11
$g^{0}_{\bar{K}N,\bar{K}N}$		-2.14	-1.74
$g^{0}_{\bar{K}N,\pi\Sigma}$		0.78	1.26
g _H ⁰		0.20	0.46
$g^0_{\pi\Sigma,B_0}$		-	0.11
$g^0_{\bar{K}N,B_0}$		-	0.15
$g_{\eta \Lambda, B_0}^0$		-	-0.17
$g^{0}_{K\equiv,B_{0}}$		-	-0.08
$m_B^0/{ m MeV}$		-	1714
$\chi^2/$ (120 data)	$U\chiPT$	166	177
Pole 1 (MeV)	1379 <i>- i</i> 71	1333 — <i>i</i> 85	1338 — <i>i</i> 89
Pole 2 (MeV)	1412 — <i>i</i> 20	1428 — <i>i</i> 23	1430 — <i>i</i> 22

Finite Volume Λ Spectrum for L = 3 fm

Finite Volume Λ Spectrum for L = 3 fm

Finite Volume Λ Spectrum for L = 3 fm

- Lattice QCD calculations have revealed there are
 - $\,\circ\,$ No low-lying three-quark dominated states in the $\Lambda(1405)$ Resonance mass region.
 - $\circ~$ Three-quark dominated states are associated with the octet states.

- Lattice QCD calculations have revealed there are
 - $\,\circ\,$ No low-lying three-quark dominated states in the $\Lambda(1405)$ Resonance mass region.
 - Three-quark dominated states are associated with the octet states.
- $\Lambda(1405)$ structure is dominated by a $\overline{K}N$ molecule. Signified by:
 - $\circ~$ The vanishing of the strange quark contribution to the magnetic moment of the $\Lambda(1405),~and$
 - The dominance of the $\overline{K}N$ component in finite-volume EFT.

- Lattice QCD calculations have revealed there are
 - $\,\circ\,$ No low-lying three-quark dominated states in the $\Lambda(1405)$ Resonance mass region.
 - Three-quark dominated states are associated with the octet states.
- $\Lambda(1405)$ structure is dominated by a $\overline{K}N$ molecule. Signified by:
 - $\circ~$ The vanishing of the strange quark contribution to the magnetic moment of the $\Lambda(1405),~and$
 - The dominance of the $\overline{K}N$ component in finite-volume EFT.
- The three-quark flavour-singlet $\Lambda(1405)$ anticipated by the quark model exists only at quark masses approaching the strange quark mass.

Constrain model parameters to experimental data

• Consider πN and ηN and bare state interactions.

- Fit yields a pole at $1531 \pm 29 i 88 \pm 2$ MeV.
- Compare PDG estimate $1510 \pm 20 i 85 \pm 40$ MeV.

Hamiltonian Model N* Spectrum: 2 fm

Hamiltonian Model N* Spectrum: 3 fm

Conclusions - Odd-Parity Nucleon Resonances

- Lattice QCD calculations have revealed there are
 - $\circ\,$ Two low-lying states in the N(1535) and N(1650) resonance mass regions with large bare three-quark basis components.
 - $\,\circ\,$ These components compose \sim 50% of the states at the physical quark masses.

Conclusions - Odd-Parity Nucleon Resonances

- Lattice QCD calculations have revealed there are
 - $\circ\,$ Two low-lying states in the N(1535) and N(1650) resonance mass regions with large bare three-quark basis components.
 - $\,\circ\,$ These components compose \sim 50% of the states at the physical quark masses.
- ηN contributions dominate the meson-baryon dressings of these states.

Conclusions - Odd-Parity Nucleon Resonances

- Lattice QCD calculations have revealed there are
 - $\circ\,$ Two low-lying states in the N(1535) and N(1650) resonance mass regions with large bare three-quark basis components.
 - $\,\circ\,$ These components compose \sim 50% of the states at the physical quark masses.
- ηN contributions dominate the meson-baryon dressings of these states.
- Strong single-particle components make these states ideal for lattice studies of the form factors and transition moments.

Conclusions - Odd-Parity Nucleon Resonances

- Lattice QCD calculations have revealed there are
 - $\circ\,$ Two low-lying states in the N(1535) and N(1650) resonance mass regions with large bare three-quark basis components.
 - $\,\circ\,$ These components compose \sim 50% of the states at the physical quark masses.
- ηN contributions dominate the meson-baryon dressings of these states.
- Strong single-particle components make these states ideal for lattice studies of the form factors and transition moments.
- The lattice scattering state energy calculated by Lang and Verduci is described accurately by Hamiltonian effective field theory constrained to experiment.
 - $\circ~$ Two-to-two particle meson-baryon interactions are essential to describing the lattice results.

What about the Roper? Lattice results at $L \simeq 3$ fm

• Filled Symbols: CSSM

Open Symbols: Cyprus Collaboration

What about the Roper? Lattice results at $L \simeq 3$ fm

• Filled Symbols: CSSM

Open Symbols: Cyprus Collaboration

"Novel analysis method for excited states in lattice QCD: The nucleon case,"
C. Alexandrou, T. Leontiou, C. N. Papanicolas and E. Stiliaris, Phys. Rev. D 91 (2015) 1, 014506 arXiv:1411.6765 [hep-lat].

Bare Roper Case: $m_0 = 2.03$ GeV

• Consider πN , $\pi \Delta$ and σN channels, dressing a bare state.

- Fit yields a pole at 1380 i 87 MeV.
- Compare PDG estimate $1365 \pm 15 i\,95 \pm 15$ MeV.

Bare Roper: Hamiltonian Model N' Spectrum

Bare Roper: Hamiltonian Model N' Spectrum

Bare Nucleon Case: $m_0 = 1.17$ GeV

• Consider πN , $\pi \Delta$ and σN channels, dressing a bare state.

- Fit yields a pole at 1357 i 36 MeV.
- Compare PDG estimate $1365 \pm 15 i\,95 \pm 15$ MeV.

Bare Nucleon: Hamiltonian Model N' Spectrum

Bare Nucleon: Hamiltonian Model N' Spectrum

- Lattice QCD calculations have revealed there are
 - $\circ~$ No low-lying three-quark dominated states in the Roper Resonance mass region.
 - $\circ~$ No localised meson-baryon states at light quark masses.

- Lattice QCD calculations have revealed there are
 - $\circ~$ No low-lying three-quark dominated states in the Roper Resonance mass region.
 - No localised meson-baryon states at light quark masses.
- Roper of the Constituent Quark Model has been seen on the lattice.
 - $\circ~$ Node structure and density is similar to model expectations.

- Lattice QCD calculations have revealed there are
 - $\circ~$ No low-lying three-quark dominated states in the Roper Resonance mass region.
 - No localised meson-baryon states at light quark masses.
- Roper of the Constituent Quark Model has been seen on the lattice.
 - Node structure and density is similar to model expectations.
- Hamiltonian Effective field theory explains the states observed in Lattice QCD as
 - $\circ~$ Having a small three-quark component associated with a light bare-nucleon basis state.

- Lattice QCD calculations have revealed there are
 - $\circ~$ No low-lying three-quark dominated states in the Roper Resonance mass region.
 - No localised meson-baryon states at light quark masses.
- Roper of the Constituent Quark Model has been seen on the lattice.
 - Node structure and density is similar to model expectations.
- Hamiltonian Effective field theory explains the states observed in Lattice QCD as
 - $\circ~$ Having a small three-quark component associated with a light bare-nucleon basis state.
- Like the $\Lambda(1405)$, the Roper resonance is dominated by meson-baryon degrees of freedom.

- Lattice QCD calculations have revealed there are
 - $\circ~$ No low-lying three-quark dominated states in the Roper Resonance mass region.
 - No localised meson-baryon states at light quark masses.
- Roper of the Constituent Quark Model has been seen on the lattice.
 - Node structure and density is similar to model expectations.
- Hamiltonian Effective field theory explains the states observed in Lattice QCD as
 - $\circ~$ Having a small three-quark component associated with a light bare-nucleon basis state.
- Like the $\Lambda(1405)$, the Roper resonance is dominated by meson-baryon degrees of freedom.
- Conclude that the Roper Resonance is dynamically generated
 - $\circ\;$ dominated by the direct two-to-two particle meson-baryon interactions.

Artistic view of $\Lambda(1405)$ Structure

Supplementary Information

The following slides provide additional information which may be of interest.

Variational Analysis

• Consider a basis of interpolating fields χ_i

Variational Analysis

- Consider a basis of interpolating fields χ_i
- Construct the correlation matrix

$$\begin{array}{ll} G_{ij}(\mathbf{p};t) &=& \displaystyle\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}}\,\mathrm{tr}\,(\,\Gamma\,\,\langle\Omega|\,\chi_i(x)\,\overline{\chi}_j(0)\,|\Omega\rangle\,)\\ &=& \displaystyle\sum_{\alpha}\,A_i^\alpha\,A_j^{\dagger\alpha}\,\exp\left(-E_\alpha(\mathbf{p})\,t\right)\,. \end{array}$$

Variational Analysis

- Consider a basis of interpolating fields χ_i
- Construct the correlation matrix

$$\begin{array}{ll} G_{ij}(\mathbf{p};t) &=& \displaystyle\sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}}\,\mathrm{tr}\,(\,\Gamma\,\,\langle\Omega|\,\chi_i(x)\,\overline{\chi}_j(0)\,|\Omega\rangle\,)\\ &=& \displaystyle\sum_{\alpha}\,A_i^\alpha\,A_j^{\dagger\alpha}\,\exp\left(-E_\alpha(\mathbf{p})\,t\right)\,. \end{array}$$

• Seek linear combinations of the interpolators $\{\chi_i\}$ that isolate individual energy eigenstates, α , at momentum **p**:

$$\phi^{lpha} = \mathsf{v}^{lpha}_i(\mathbf{p}) \, \chi_i \,, \qquad \overline{\phi}^{lpha} = u^{lpha}_i(\mathbf{p}) \, \overline{\chi}_i \,.$$

Variational Analysis

• When successful, only state α participates in the correlation function, and one can write recurrence relations

$$G(\mathbf{p}; t_0 + \delta t) \, \mathbf{u}^{lpha}(\mathbf{p}) = \mathrm{e}^{-\mathcal{E}_{lpha}(\mathbf{p}) \, \delta t} \, G(\mathbf{p}; t_0) \, \mathbf{u}^{lpha}(\mathbf{p})$$

$$\mathbf{v}^{\alpha \mathsf{T}}(\mathbf{p}) G(\mathbf{p}; t_0 + \delta t) = e^{-\mathcal{E}_{\alpha}(\mathbf{p}) \, \delta t} \, \mathbf{v}^{\alpha \mathsf{T}}(\mathbf{p}) G(\mathbf{p}; t_0)$$

a Generalised Eigenvalue Problem (GEVP).

Variational Analysis

• When successful, only state α participates in the correlation function, and one can write recurrence relations

$$G(\mathbf{p}; t_0 + \delta t) \, \mathbf{u}^{lpha}(\mathbf{p}) = \mathrm{e}^{-\mathcal{E}_{lpha}(\mathbf{p}) \, \delta t} \, G(\mathbf{p}; t_0) \, \mathbf{u}^{lpha}(\mathbf{p})$$

$$\mathbf{v}^{\alpha \mathsf{T}}(\mathbf{p}) \ G(\mathbf{p}; t_0 + \delta t) = \mathrm{e}^{-\mathcal{E}_{\alpha}(\mathbf{p}) \, \delta t} \, \mathbf{v}^{\alpha \mathsf{T}}(\mathbf{p}) \ G(\mathbf{p}; t_0)$$

a Generalised Eigenvalue Problem (GEVP).

• Solve for the left, $\mathbf{v}^{\alpha}(\mathbf{p})$, and right, $\mathbf{u}^{\alpha}(\mathbf{p})$, generalised eigenvectors of $G(\mathbf{p}; t_0 + \delta t)$ and $G(\mathbf{p}; t_0)$.

Eigenstate-Projected Correlation Functions

• Using these optimal eigenvectors, create eigenstate-projected correlation functions

$$egin{aligned} G^lpha(\mathbf{p};t) &= \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}} \left\langle \Omega | \phi^lpha(x)\,\overline{\phi}^lpha(0) | \Omega
ight
angle \ , \ &= \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}} \left\langle \Omega | v_i^lpha(\mathbf{p})\,\chi_i(x)\,\overline{\chi}_j(0)\,u_j^lpha(\mathbf{p}) | \Omega
ight
angle \ , \ &= \mathbf{v}^{lpha\mathsf{T}}(\mathbf{p})\,G(\mathbf{p};t)\,\mathbf{u}^lpha(\mathbf{p}) \,. \end{aligned}$$

$$G^{lpha}(\mathbf{p};t) = A_{lpha} \exp\left(-E_{lpha}(\mathbf{p}) t
ight)$$
 .

Eigenstate-Projected Correlation Functions

• Using these optimal eigenvectors, create eigenstate-projected correlation functions

$$\begin{split} G^{\alpha}(\mathbf{p};t) &= \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}} \left\langle \Omega | \phi^{\alpha}(x) \,\overline{\phi}^{\alpha}(0) | \Omega \right\rangle \,, \\ &= \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}} \left\langle \Omega | v_{i}^{\alpha}(\mathbf{p}) \,\chi_{i}(x) \,\overline{\chi}_{j}(0) \,u_{j}^{\alpha}(\mathbf{p}) | \Omega \right\rangle \,, \\ &= \mathbf{v}^{\alpha \mathsf{T}}(\mathbf{p}) \, G(\mathbf{p};t) \, \mathbf{u}^{\alpha}(\mathbf{p}) \,. \end{split}$$

$$G^{lpha}(\mathbf{p};t) = A_{lpha} \exp\left(-E_{lpha}(\mathbf{p}) t
ight)$$
 .

• Here t is different from t_0 and δt and can become large.

Smeared Source to Point Sink Correlation Functions

States Tracked via Orthogonal Eigenvectors

Positive Parity Nucleon Spectrum: CSSM

Further Information

- "Roper Resonance in 2+1 Flavor QCD," M. S. Mahbub, *et al.* [CSSM], Phys. Lett. B **707** (2012) 389 arXiv:1011.5724 [hep-lat],
- "Low-lying Odd-parity States of the Nucleon in Lattice QCD," M. Selim Mahbub, *et al.* [CSSM], Phys. Rev. D Rapid Comm. **87** (2013) 011501, arXiv:1209.0240 [hep-lat]
- "Structure and Flow of the Nucleon Eigenstates in Lattice QCD,"
 M. S. Mahbub, *et al.* [CSSM],
 Phys. Rev. D 87 (2013) 9, 094506
 arXiv:1302.2987 [hep-lat].

Sequential Empirical Bayesian (SEB) Analysis: χ QCD Collaboration

$\chi {\rm QCD}$ & HSC Systematic Comparison - Same Correlators Examined

Note: $28 \times 28 = 784$ correlators versus 1.

K. F. Liu, et. al, PoS LATTICE 2013 (2014) 507, arXiv:1403.6847 [hep-ph] 98 of 115

Positive Parity Spectrum: Cyprus (Twisted Mass) Collaboration: Feb. '13

Positive Parity Spectrum: Cyprus (Twisted Mass) Collaboration: Jan. '14

d-quark probability density in ground state proton: $m_{\pi} = 156$ MeV (CSSM)

d-quark probability density in first excited proton: $m_{\pi} = 156$ MeV (CSSM)

Positive Parity Nucleon Spectrum: only small smearing: Cyprus

Positive Parity Nucleon Spectrum: r_{RMS} smearing of 8.6 lu: Cyprus

"Novel analysis method for excited states in lattice QCD: The nucleon case,"
C. Alexandrou, T. Leontiou, C. N. Papanicolas and E. Stiliaris, Phys. Rev. D 91 (2015) 1, 014506 arXiv:1411.6765 [hep-lat].

• Does not rely on plateau identification of effective masses

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{\alpha=0}^{N_{\mathrm{states}}} A_i^{lpha} A_j^{\dagger lpha} e^{-E_{lpha} t} . \quad i,j = 1, \ldots, N_{\mathrm{interpolators}} .$$

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A^{lpha}_i \, A^{\dagger lpha}_j \, e^{-E_{lpha} \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

• Importance sampling is used to select fit parameters, A_i^{α} and E_{α} , with the probability $\exp(-\chi^2/2)$.

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A^{lpha}_i \, A^{\dagger lpha}_j \, e^{-E_{lpha} \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

- Importance sampling is used to select fit parameters, A_i^{α} and E_{α} , with the probability $\exp(-\chi^2/2)$.
 - A parallel tempering algorithm is used to avoid local minima traps.

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A^{lpha}_i \, A^{\dagger lpha}_j \, e^{-E_{lpha} \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

• Importance sampling is used to select fit parameters, A_i^{α} and E_{α} , with the probability $\exp(-\chi^2/2)$.

 $\circ\,$ A parallel tempering algorithm is used to avoid local minima traps.

• Parameters are determined by fitting a Gaussian to their probability distributions.

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A^{lpha}_i \, A^{\dagger lpha}_j \, e^{-E_{lpha} \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

• Importance sampling is used to select fit parameters, A_i^{α} and E_{α} , with the probability $\exp(-\chi^2/2)$.

• A parallel tempering algorithm is used to avoid local minima traps.

- Parameters are determined by fitting a Gaussian to their probability distributions.
- Increase $N_{\rm states}$ until there is no sensitivity to additional exponentials. ^{106 of 115}

Analysis of Correlation Matrix is Essential

Dispersion Relation Test for the $\Lambda(1405)$

SUBAT

\mathcal{G}_{E} for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_{E} are consistent with the development of a non-trivial $\overline{\mathsf{K}}\mathsf{N}$ component at light quark masses.

SUBAT

\mathcal{G}_{E} for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_E are consistent with the development of a non-trivial $\overline{K}N$ component at light quark masses.

- Noting that the centre of mass of the $\overline{K}(s,\overline{\ell})$ $N(\ell, u, d)$ is nearer the heavier N,
 - The anti–light-quark contribution, $\overline{\ell}$, is distributed further out by the \overline{K} and leaves an enhanced light-quark form factor.

\mathcal{G}_{E} for the $\Lambda(1405)$

SUBAT

\mathcal{G}_{E} for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_E are consistent with the development of a non-trivial $\overline{K}N$ component at light quark masses.

- Noting that the centre of mass of the $\overline{K}(s,\overline{\ell})$ $N(\ell, u, d)$ is nearer the heavier N,
 - $\circ~$ The anti–light-quark contribution, $\overline{\ell},$ is distributed further out by the \overline{K} and leaves an enhanced light-quark form factor.
 - $\circ~$ The strange quark may be distributed further out by the \overline{K} and thus have a smaller form factor.

\mathcal{G}_{E} for the $\Lambda(1405)$

Excited State Form Factors

• The eigenstate-projected three-point correlation function is

$$\begin{aligned} G^{\mu}_{\alpha}(\mathbf{p}',\mathbf{p};t_2,t_1) &= \sum_{\mathbf{x}_1,\mathbf{x}_2} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}'\cdot\mathbf{x}_2} \mathrm{e}^{\mathrm{i}(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_1} \times \\ &\times \langle \Omega | v_i^{\alpha}(\mathbf{p}') \, \chi_i(x_2) \, j^{\mu}(x_1) \, \overline{\chi}_j(0) \, u_i^{\alpha}(\mathbf{p}) | \Omega \rangle \\ &= \mathbf{v}^{\alpha\mathsf{T}}(\mathbf{p}') \, G^{\mu}_{ij}(\mathbf{p}',\mathbf{p};t_2,t_1) \, \mathbf{u}^{\alpha}(\mathbf{p}) \end{aligned}$$

where

$$G_{ij}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) = \sum_{\mathbf{x}_1,\mathbf{x}_2} e^{-i\,\mathbf{p}'\cdot\mathbf{x}_2} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_1} \langle \Omega | \chi_i(x_2) j^{\mu}(x_1) \,\overline{\chi}_j(0) | \Omega \rangle$$

is the matrix constructed from the three-point correlation functions of the original operators $\{\chi_i\}$.

Extracting Form Factors from Lattice QCD

• To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$R^{\mu}_{\alpha}(\mathbf{p}',\mathbf{p};t_{2},t_{1}) = \left(\frac{G^{\mu}_{\alpha}(\mathbf{p}',\mathbf{p};t_{2},t_{1}) G^{\mu}_{\alpha}(\mathbf{p},\mathbf{p}';t_{2},t_{1})}{G_{\alpha}(\mathbf{p}';t_{2}) G_{\alpha}(\mathbf{p};t_{2})}\right)^{1/2}$$

Extracting Form Factors from Lattice QCD

To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$\mathcal{R}^{\mu}_{lpha}(\mathbf{p}',\mathbf{p};t_2,t_1) = \left(rac{G^{\mu}_{lpha}(\mathbf{p}',\mathbf{p};t_2,t_1) \ G^{\mu}_{lpha}(\mathbf{p},\mathbf{p}';t_2,t_1)}{G_{lpha}(\mathbf{p}';t_2) \ G_{lpha}(\mathbf{p};t_2)}
ight)^{1/2}$$

• To further simply things, we define the reduced ratio

$$\overline{R}^{\mu}_{\alpha} = \left(\frac{2E_{\alpha}(\mathbf{p})}{E_{\alpha}(\mathbf{p}) + m_{\alpha}}\right)^{1/2} \left(\frac{2E_{\alpha}(\mathbf{p}')}{E_{\alpha}(\mathbf{p}') + m_{\alpha}}\right)^{1/2} R^{\mu}_{\alpha}$$

Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$\langle p', s' | j^{\mu} | p, s \rangle = \left(\frac{m_{\alpha}^2}{E_{\alpha}(\mathbf{p}) E_{\alpha}(\mathbf{p}')} \right)^{1/2} \times \\ \times \overline{u}(\mathbf{p}') \left(F_1(q^2) \gamma^{\mu} + \mathrm{i} F_2(q^2) \sigma^{\mu\nu} \frac{q^{\nu}}{2m_{\alpha}} \right) u(\mathbf{p})$$

• The Dirac and Pauli form factors are related to the Sachs form factors through

$$egin{aligned} \mathcal{G}_{\mathsf{E}}(q^2) &= F_1(q^2) - rac{q^2}{(2m^{lpha})^2}F_2(q^2) \ \mathcal{G}_{\mathsf{M}}(q^2) &= F_1(q^2) + F_2(q^2) \end{aligned}$$

Sachs Form Factors for Spin-1/2 Baryons

A suitable choice of momentum (q = (q, 0, 0)) and the (implicit) Dirac matrices allows us to directly access the Sachs form factors:
 o for G_F: using Γ[±]/₄ for both two- and three-point.

$$\mathcal{G}^{lpha}_{\mathsf{E}}(q^2) = \overline{R}^4_{lpha}(\mathbf{q},\mathbf{0};t_2,t_1)$$

• for \mathcal{G}_{M} : using Γ_4^{\pm} for two-point and Γ_j^{\pm} for three-point,

$$|arepsilon_{ijk} q^i| \, \mathcal{G}^lpha_{\mathsf{M}}(q^2) = (E_lpha(\mathbf{q}) + m_lpha) \, \overline{R}^k_lpha(\mathbf{q},\mathbf{0};t_2,t_1)$$

• where for positive parity states,

$$\Gamma_j^+ = rac{1}{2} egin{bmatrix} \sigma_j & 0 \ 0 & 0 \end{bmatrix} \qquad \Gamma_4^+ = rac{1}{2} egin{bmatrix} \mathbb{I} & 0 \ 0 & 0 \end{bmatrix}$$

and for negative parity states,

$$\Gamma_j^- = -\gamma_5 \Gamma_j^+ \gamma_5 = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \sigma_j \end{bmatrix} \qquad \Gamma_4^- = -\gamma_5 \Gamma_4^+ \gamma_5 = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{I} \end{bmatrix}$$

Finite Volume Dependence of the Λ Spectrum

