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• Ryan Bignell on Nucleon Polarizabilities: Friday, C1, 11:10

• Zhan-Wei Liu on Hamiltonian Effective Field Theory: Friday, C1, 11:25

• Jonathan Hall on the magnetic moment of the Λ(1405), Friday, C1, 12:10

• Finn Stokes on Excited State Form Factors: Immediately following this talk.
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CSSM Simulation Details

Based on the PACS-CS (2 + 1)-flavour ensembles, available through the ILDG.
S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

• Lattice size of 323 × 64 with β = 1.90. L ≃ 3 fm.

• 5 pion masses, ranging from 640 MeV down to 156 MeV.

• The strange quark κs is held fixed as the light quark masses vary.
◦ Changes in the strange quark contributions are environmental effects.
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Positive Parity Nucleon Spectrum: CSSM
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Comparison: Hadron Spectrum Collaboration (HSC)

• “Excited state baryon spectroscopy from lattice QCD,”
R. G. Edwards, J. J. Dudek, D. G. Richards and S. J. Wallace,
Phys. Rev. D 84 (2011) 074508 arXiv:1104.5152 [hep-ph].
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CSSM & HSC Comparison: Positive Parity CSSM
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CSSM & HSC Comparison: Positive Parity
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CSSM & HSC Comparison: Negative Parity CSSM
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CSSM & HSC Comparison: Negative Parity
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Further Information

• “Roper Resonance in 2+1 Flavor QCD,”
M. S. Mahbub, et al. [CSSM],
Phys. Lett. B 707 (2012) 389
arXiv:1011.5724 [hep-lat],

• “Low-lying Odd-parity States of the Nucleon in Lattice QCD,”
M. Selim Mahbub, et al. [CSSM],
Phys. Rev. D Rapid Comm. 87 (2013) 011501,
arXiv:1209.0240 [hep-lat]

• “Structure and Flow of the Nucleon Eigenstates in Lattice QCD,”
M. S. Mahbub, et al. [CSSM],
Phys. Rev. D 87 (2013) 9, 094506
arXiv:1302.2987 [hep-lat].
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Wave Functions of Positive-Parity Nucleons
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d-quark probability density in ground state proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)

14 of 115



d-quark probability density in N = 3 excited state of proton (CSSM)

15 of 115



Comparison with the Simple Quark Model - CSSM
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Finite-Volume Effects in Wave Functions
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Finite-Volume Effect in N = 2 excited state: mπ = 702 MeV
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Finite-Volume Effect in N = 2 excited state: mπ = 570 MeV
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Finite-Volume Effect in N = 2 excited state: mπ = 411 MeV
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Finite-Volume Effect in N = 2 excited state: mπ = 296 MeV
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Finite-Volume Effect in N = 2 excited state: mπ = 156 MeV
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 1st excited state of proton (CSSM)
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d-quark probability density in 4th excited state of proton (CSSM)
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The Λ(1405) and Lattice QCD

Our 2012 work successfully isolated three low-lying odd-parity spin-1/2 states.
B. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

• An extrapolation of the trend of the lowest state reproduces the mass of the
Λ(1405).

• Subsequent studies have confirmed these results.
G. P. Engel, C. B. Lang, A. Schäfer, Phys. Rev. D 87, 034502 (2013)
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Λ(1405) and Baryon Octet dominated states
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Operators Used in Λ(1405) Analysis

We consider local three-quark operators with the correct quantum numbers for the Λ
channel, including

• Flavour-octet operators

χ8
1 =

1√
6

εabc
(

2(uaCγ5db)sc + (uaCγ5sb)dc − (daCγ5sb)uc
)

χ8
2 =

1√
6

εabc
(

2(uaCdb)γ5sc + (uaCsb)γ5dc − (daCsb)γ5uc
)

• Flavour-singlet operator

χ1 = 2εabc
(

(uaCγ5db)sc − (uaCγ5sb)dc + (daCγ5sb)uc
)

• Consideration of 16 and 100 sweeps of gauge-invariant Gaussian smearing provides
a 6 × 6 correlation matrix.
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Flavour structure of the Λ(1405)
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The importance of eigenstate isolation (red)
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Probing with the electromagnetic current
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Only the projected correlator has acceptable χ2/dof
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χ2/dof = 0.55
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Is the Λ(1405) really exotic?
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Strange Magnetic Form Factor of the Λ(1405)

• Provides direct insight into the possible dominance of a molecular KN bound state.
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Strange Magnetic Form Factor of the Λ(1405)

• Provides direct insight into the possible dominance of a molecular KN bound state.

• In forming such a molecular state, the Λ(u, d , s) valence quark configuration is
complemented by

◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d , d pair making a K 0(s, d) - neutron (d , d , u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon and has no
preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.

• Thus, the strange quark does not contribute to the magnetic form factor of the
Λ(1405) when it is dominated by a KN molecule.
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GM for the Λ(1405) at Q2 ∼ 0.16 GeV2

light sector strange sector
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GM for the Λ(1405) at Q2 ∼ 0.16 GeV2
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Hamiltonian Effective Field Theory

• J. M. M. Hall, et al. [CSSM]
”Lattice QCD Evidence that the Λ(1405) Resonance is an Antikaon Nucleon Molecule”
Phys. Rev. Lett. 114, 132002 (2015), arXiv:1411.3402 [hep-lat]
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Hamiltonian Effective Field Theory Model

• Consider the Λ(1405).
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Hamiltonian Effective Field Theory Model

• Consider the Λ(1405).

• The four octet meson-baryon interaction channels of the Λ(1405) are considered:
πΣ, KN, KΞ and ηΛ.

• A single-particle state with bare mass, m0 + α0 m2
π is also included.

• In a finite periodic volume, momentum is quantised to n (2π/L).

• Working on a cubic volume of extent L on each side, it is convenient to define the
momentum magnitudes

kn =
√

n2
x + n2

y + n2
z

2π

L
,

with ni = 0, 1, 2, . . . and integer n = n2
x + n2

y + n2
z .
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Hamiltonian model, H0

Denoting each meson-baryon energy by ωMB(kn) = ωM(kn) + ωB(kn), with

ωA(kn) ≡
√

k2
n + m2

A, the non-interacting Hamiltonian takes the form

H0 =

























m0 + α0 m2
π

0 0 · · ·

0

ωπΣ(k0)

. . .

ωηΛ(k0)

0 · · ·

0 0

ωπΣ(k1)

. . .

ωηΛ(k1)

· · ·

.

.

.
.
.
.

.

.

.
. . .

























.
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Hamiltonian model, HI

• Interaction entries describe the coupling of the single-particle state to the
two-particle meson-baryon states.
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Hamiltonian model, HI

• Interaction entries describe the coupling of the single-particle state to the
two-particle meson-baryon states.

• Each entry represents the S-wave interaction energy of the Λ(1405) with one of the
four channels at a certain value for kn.

HI =





























0 gπΣ(k0) · · · gηΛ(k0) gπΣ(k1) · · · gηΛ(k1) · · ·

gπΣ(k0) 0 · · ·

...
... 0

gηΛ(k0)
. . .

gπΣ(k1)
.
..

gηΛ(k1)
...





























.
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Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model is

λ = m0 + α0 m2
π −

∑

M,B

∞
∑

n=0

g2
MB(kn)

ωMB(kn) − λ
.

with λ denoting the energy eigenvalue.

47 of 115



Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model is

λ = m0 + α0 m2
π −

∑

M,B

∞
∑

n=0

g2
MB(kn)

ωMB(kn) − λ
.

with λ denoting the energy eigenvalue.

• As λ is finite, the pole in the denominator of the right-hand side is never accessed.

• The bare mass and the free meson-baryon energies encounter self-energy corrections
that lead to avoided level-crossings in the finite-volume energy eigenstates.
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Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model is

λ = m0 + α0 m2
π −

∑

M,B

∞
∑

n=0

g2
MB(kn)

ωMB(kn) − λ
.

with λ denoting the energy eigenvalue.

• As λ is finite, the pole in the denominator of the right-hand side is never accessed.

• The bare mass and the free meson-baryon energies encounter self-energy corrections
that lead to avoided level-crossings in the finite-volume energy eigenstates.

• Reference to chiral effective field theory provides the form of gMB(kn).
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Hamiltonian model solution and fit

• Flavour-singlet couplings between the bare state and the meson-baryon states are
constrained by SU(3)-flavour symmetry and the width of the Λ(1405) resonance.
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Hamiltonian model solution and fit

• Flavour-singlet couplings between the bare state and the meson-baryon states are
constrained by SU(3)-flavour symmetry and the width of the Λ(1405) resonance.

• The eigenvalues and eigenvectors of H are obtained via the LAPACK software
library.

• The bare mass parameters m0 and α0 are determined by a fit to the lattice QCD
results.
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Hamiltonian model fit
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Avoided Level Crossing
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Energy eigenstate, |E 〉, basis |state〉 composition
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Hamiltonian model, HI

• Our approach included a bare state dressed by flavour-singlet coupled meson-baryon
channels

HI =





























0 gπΣ(k0) · · · gηΛ(k0) gπΣ(k1) · · · gηΛ(k1) · · ·

gπΣ(k0) 0 · · ·

...
... 0

gηΛ(k0)
. . .

gπΣ(k1)
...

gηΛ(k1)
...





























.
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Hamiltonian model, HI

• Our approach included a bare state dressed by flavour-singlet coupled meson-baryon
channels

HI =





























0 gπΣ(k0) · · · gηΛ(k0) gπΣ(k1) · · · gηΛ(k1) · · ·

gπΣ(k0) 0 · · ·

...
... 0

gηΛ(k0)
. . .

gπΣ(k1)
...

gηΛ(k1)
...





























.

• Ironically, most analyses omit these interactions and instead include only the direct
meson-baryon to meson-baryon interactions

◦ Weinberg-Tomozawa terms
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The two-pole description of the Λ(1405)
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Direct two-to-two particle interactions

• We use the potential derived from Weinberg-Tomozawa term

V I
α,β(k, k ′) =

g I
α,β

8π2f 2
π

ωαM
(k) + ωβM

(k ′)
√

2ωαM
(k)

√

2ωβM
(k ′)

u(k) u(k ′) .
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Direct two-to-two particle interactions

• We use the potential derived from Weinberg-Tomozawa term

V I
α,β(k, k ′) =

g I
α,β

8π2f 2
π

ωαM
(k) + ωβM

(k ′)
√

2ωαM
(k)

√

2ωβM
(k ′)

u(k) u(k ′) .

• Dipole regulator functions u(k) have a fixed scale of Λ = 1 GeV.

• Couplings vanishing in the SU(3)-flavour symmetry limit are not considered.
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Direct two-to-two particle interactions

• Eight non-trivial couplings are constrained by experimental data in infinite volume.

g0
πΣ,πΣ, g0

K̄N,K̄N
, g0

K̄N,πΣ, g0
H , g1

πΣ,πΣ, g1
K̄N,K̄N

, g1
K̄N,πΣ, g1

K̄N,πΛ,

with SU(3) flavour symmetry constraints for the heavier ηΛ and KΞ channels

g0
K̄N,ηΛ = −3/

√
2 g0

H , g0
πΣ,KΞ = −

√

3/2 g0
H ,

g0
ηΛ,KΞ = 3/

√
2 g0

H , g0
KΞ,KΞ = −3 g0

H . (1)
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Direct two-to-two particle interactions

• Eight non-trivial couplings are constrained by experimental data in infinite volume.

g0
πΣ,πΣ, g0

K̄N,K̄N
, g0

K̄N,πΣ, g0
H , g1

πΣ,πΣ, g1
K̄N,K̄N

, g1
K̄N,πΣ, g1

K̄N,πΛ,

with SU(3) flavour symmetry constraints for the heavier ηΛ and KΞ channels

g0
K̄N,ηΛ = −3/

√
2 g0

H , g0
πΣ,KΞ = −

√

3/2 g0
H ,

g0
ηΛ,KΞ = 3/

√
2 g0

H , g0
KΞ,KΞ = −3 g0

H . (1)

• Finite volume spectrum is then a prediction.

55 of 115



Couplings Constrained by Experiment
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Finite Volume Λ Spectrum for L = 3 fm
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Comparison with UχPT
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Raquel Molina and Michael Doring, arXiv:1512.05831 [hep-lat]
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Direct two-to-two particle interactions & bare state

• Dipole regulator functions u(k) have a fixed scale of Λ = 1 GeV.

• Same eight two-to-two particle couplings are considered

g0
πΣ,πΣ, g0

K̄N,K̄N
, g0

K̄N,πΣ, g0
H , g1

πΣ,πΣ, g1
K̄N,K̄N

, g1
K̄N,πΣ, g1

K̄N,πΛ,
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• Five new parameters describing bare to two-particle interactions are introduced

m0
B, g0

πΣ,B0
, g0

K̄N,B0
, g0

ηΛ,B0
, g0

KΞ,B0
,

• These 13 parameters are constrained by experimental data.

• A linear quark mass dependence for the bare mass is constrained by the lattice
results.
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Couplings and m0
B Constrained by Experiment
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I = 0 Parameters No Bare State With Bare State

g0
πΣ,πΣ -1.77 -1.11

g0
K̄N,K̄N

-2.14 -1.74

g0
K̄N,πΣ

0.78 1.26

g0
H 0.20 0.46

g0
πΣ,B0

- 0.11

g0
K̄N,B0

- 0.15

g0
ηΛ,B0

- -0.17

g0
KΞ,B0

- -0.08

m0
B/MeV - 1714

χ2/ (120 data) UχPT 166 177

Pole 1 (MeV) 1379 − i 71 1333 − i 85 1338 − i 89
Pole 2 (MeV) 1412 − i 20 1428 − i 23 1430 − i 22
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Finite Volume Λ Spectrum for L = 3 fm
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Finite Volume Λ Spectrum for L = 3 fm
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Conclusions - Λ(1405) Resonance

• Lattice QCD calculations have revealed there are
◦ No low-lying three-quark dominated states in the Λ(1405) Resonance mass region.
◦ Three-quark dominated states are associated with the octet states.

67 of 115



Conclusions - Λ(1405) Resonance

• Lattice QCD calculations have revealed there are
◦ No low-lying three-quark dominated states in the Λ(1405) Resonance mass region.
◦ Three-quark dominated states are associated with the octet states.

• Λ(1405) structure is dominated by a KN molecule. Signified by:
◦ The vanishing of the strange quark contribution to the magnetic moment of the

Λ(1405), and

◦ The dominance of the KN component in finite-volume EFT.

67 of 115



Conclusions - Λ(1405) Resonance

• Lattice QCD calculations have revealed there are
◦ No low-lying three-quark dominated states in the Λ(1405) Resonance mass region.
◦ Three-quark dominated states are associated with the octet states.

• Λ(1405) structure is dominated by a KN molecule. Signified by:
◦ The vanishing of the strange quark contribution to the magnetic moment of the

Λ(1405), and

◦ The dominance of the KN component in finite-volume EFT.

• The three-quark flavour-singlet Λ(1405) anticipated by the quark model exists only
at quark masses approaching the strange quark mass.

67 of 115



Low-lying negative-parity N∗ Spectrum

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
m

2

π
(GeV2)

0.0

0.5

1.0

1.5

2.0

2.5

E
α
(G

eV
)

CSSM

JLab

Cyprus

Lang & Verduci

68 of 115



Constrain model parameters to experimental data
• Consider πN and ηN and bare state interactions.

• Fit to phase shift and inelasticity
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• Fit yields a pole at 1531 ± 29 − i 88 ± 2 MeV.

• Compare PDG estimate 1510 ± 20 − i 85 ± 40 MeV.
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Hamiltonian Model N∗ Spectrum: 2 fm
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Hamiltonian Model N∗ Spectrum: 2 fm
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Hamiltonian Model N∗ Spectrum: 3 fm
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Hamiltonian Model N∗ Spectrum: 3 fm
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Conclusions - Odd-Parity Nucleon Resonances

• Lattice QCD calculations have revealed there are
◦ Two low-lying states in the N(1535) and N(1650) resonance mass regions with large

bare three-quark basis components.
◦ These components compose ∼ 50% of the states at the physical quark masses.
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Conclusions - Odd-Parity Nucleon Resonances

• Lattice QCD calculations have revealed there are
◦ Two low-lying states in the N(1535) and N(1650) resonance mass regions with large

bare three-quark basis components.
◦ These components compose ∼ 50% of the states at the physical quark masses.

• ηN contributions dominate the meson-baryon dressings of these states.

• Strong single-particle components make these states ideal for lattice studies of the
form factors and transition moments.

• The lattice scattering state energy calculated by Lang and Verduci is described
accurately by Hamiltonian effective field theory constrained to experiment.

◦ Two-to-two particle meson-baryon interactions are essential to describing the lattice
results.
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What about the Roper? Lattice results at L ≃ 3 fm
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• Filled Symbols: CSSM Open Symbols: Cyprus Collaboration
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• See Adrian Kiritidis’ talk,
Tuesday R6 2:40
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Athens Model Independent Analysis Scheme (AMIAS)

• “Novel analysis method for excited states in lattice QCD:
The nucleon case,”
C. Alexandrou, T. Leontiou, C. N. Papanicolas and E. Stiliaris,
Phys. Rev. D 91 (2015) 1, 014506
arXiv:1411.6765 [hep-lat].
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Bare Roper Case: m0 = 2.03 GeV
• Consider πN, π∆ and σN channels, dressing a bare state.

• Fit to phase shift and inelasticity
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• Fit yields a pole at 1380 − i 87 MeV.

• Compare PDG estimate 1365 ± 15 − i 95 ± 15 MeV.
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Bare Roper: Hamiltonian Model N ′ Spectrum
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Bare Roper: Hamiltonian Model N ′ Spectrum
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Bare Nucleon Case: m0 = 1.17 GeV
• Consider πN, π∆ and σN channels, dressing a bare state.

• Fit to phase shift and inelasticity
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• Fit yields a pole at 1357 − i 36 MeV.

• Compare PDG estimate 1365 ± 15 − i 95 ± 15 MeV.
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Bare Nucleon: Hamiltonian Model N ′ Spectrum
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Bare Nucleon: Hamiltonian Model N ′ Spectrum
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Conclusions - Roper Resonance

• Lattice QCD calculations have revealed there are
◦ No low-lying three-quark dominated states in the Roper Resonance mass region.
◦ No localised meson-baryon states at light quark masses.
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Conclusions - Roper Resonance

• Lattice QCD calculations have revealed there are
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Conclusions - Roper Resonance

• Lattice QCD calculations have revealed there are
◦ No low-lying three-quark dominated states in the Roper Resonance mass region.
◦ No localised meson-baryon states at light quark masses.

• Roper of the Constituent Quark Model has been seen on the lattice.
◦ Node structure and density is similar to model expectations.

• Hamiltonian Effective field theory explains the states observed in Lattice QCD as
◦ Having a small three-quark component associated with a light bare-nucleon basis state.

• Like the Λ(1405), the Roper resonance is dominated by meson-baryon degrees of
freedom.

• Conclude that the Roper Resonance is dynamically generated
◦ dominated by the direct two-to-two particle meson-baryon interactions.
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Artistic view of Λ(1405) Structure

or the neutral Roper upon s → d .
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Supplementary Information

The following slides provide additional information which may be of interest.
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Variational Analysis

• Consider a basis of interpolating fields χi
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• Consider a basis of interpolating fields χi

• Construct the correlation matrix

Gij(p; t) =
∑

x

e−i p·x tr ( Γ 〈Ω| χi(x)χj(0) |Ω〉 )

=
∑

α

Aα
i A

†α
j exp (−Eα(p) t) .
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Variational Analysis

• Consider a basis of interpolating fields χi

• Construct the correlation matrix

Gij(p; t) =
∑

x

e−i p·x tr ( Γ 〈Ω| χi(x)χj(0) |Ω〉 )

=
∑

α

Aα
i A

†α
j exp (−Eα(p) t) .

• Seek linear combinations of the interpolators { χi } that isolate individual energy
eigenstates, α, at momentum p:

φα = vα
i (p)χi , φα = uα

i (p)χi .
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Variational Analysis

• When successful, only state α participates in the correlation function, and one can
write recurrence relations

G(p; t0 + δt)uα(p) = e−Eα(p) δt G(p; t0)uα(p)

vαT(p)G(p; t0 + δt) = e−Eα(p) δt vαT(p)G(p; t0)

a Generalised Eigenvalue Problem (GEVP).
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• When successful, only state α participates in the correlation function, and one can
write recurrence relations

G(p; t0 + δt)uα(p) = e−Eα(p) δt G(p; t0)uα(p)

vαT(p)G(p; t0 + δt) = e−Eα(p) δt vαT(p)G(p; t0)

a Generalised Eigenvalue Problem (GEVP).

• Solve for the left, vα(p), and right, uα(p), generalised eigenvectors of G(p; t0 + δt)
and G(p; t0).
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Eigenstate-Projected Correlation Functions

• Using these optimal eigenvectors, create eigenstate-projected correlation functions

Gα(p; t) =
∑

x

e−i p·x 〈Ω|φα(x)φα(0)|Ω〉 ,

=
∑

x

e−i p·x 〈Ω|vα
i (p)χi(x)χj(0) uα

j (p)|Ω〉 ,

= vαT(p)G(p; t)uα(p) .

Gα(p; t) = Aα exp (−Eα(p) t) .
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Eigenstate-Projected Correlation Functions

• Using these optimal eigenvectors, create eigenstate-projected correlation functions

Gα(p; t) =
∑

x

e−i p·x 〈Ω|φα(x)φα(0)|Ω〉 ,

=
∑

x

e−i p·x 〈Ω|vα
i (p)χi(x)χj(0) uα

j (p)|Ω〉 ,

= vαT(p)G(p; t)uα(p) .

Gα(p; t) = Aα exp (−Eα(p) t) .

• Here t is different from t0 and δt and can become large.
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Smeared Source to Point Sink Correlation Functions
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States Tracked via Orthogonal Eigenvectors

94 of 115



Positive Parity Nucleon Spectrum: CSSM

95 of 115



Further Information

• “Roper Resonance in 2+1 Flavor QCD,”
M. S. Mahbub, et al. [CSSM],
Phys. Lett. B 707 (2012) 389
arXiv:1011.5724 [hep-lat],

• “Low-lying Odd-parity States of the Nucleon in Lattice QCD,”
M. Selim Mahbub, et al. [CSSM],
Phys. Rev. D Rapid Comm. 87 (2013) 011501,
arXiv:1209.0240 [hep-lat]

• “Structure and Flow of the Nucleon Eigenstates in Lattice QCD,”
M. S. Mahbub, et al. [CSSM],
Phys. Rev. D 87 (2013) 9, 094506
arXiv:1302.2987 [hep-lat].
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Sequential Empirical Bayesian (SEB) Analysis: χQCD Collaboration
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χQCD & HSC Systematic Comparison - Same Correlators Examined
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Positive Parity Spectrum: Cyprus (Twisted Mass) Collaboration: Feb. ’13
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Positive Parity Spectrum: Cyprus (Twisted Mass) Collaboration: Jan. ’14
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d-quark probability density in ground state proton: mπ = 156 MeV (CSSM)
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d-quark probability density in first excited proton: mπ = 156 MeV (CSSM)
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Positive Parity Nucleon Spectrum: only small smearing: Cyprus
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Positive Parity Nucleon Spectrum: rRMS smearing of 8.6 lu: Cyprus
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Athens Model Independent Analysis Scheme (AMIAS)

• “Novel analysis method for excited states in lattice QCD:
The nucleon case,”
C. Alexandrou, T. Leontiou, C. N. Papanicolas and E. Stiliaris,
Phys. Rev. D 91 (2015) 1, 014506
arXiv:1411.6765 [hep-lat].
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Athens Model Independent Analysis Scheme (AMIAS)

• Does not rely on plateau identification of effective masses
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Athens Model Independent Analysis Scheme (AMIAS)

• Does not rely on plateau identification of effective masses

• Exploits small time separations where the excited states contribute and statistical
errors are small.

• The Correlation matrix has the spectral decomposition

Gij(t) =
Nstates
∑

α=0

Aα
i A

†α
j e−Eα t . i , j = 1, . . . , Ninterpolators .

• Importance sampling is used to select fit parameters, Aα
i and Eα, with the

probability exp(−χ2/2).
◦ A parallel tempering algorithm is used to avoid local minima traps.

• Parameters are determined by fitting a Gaussian to their probability distributions.

• Increase Nstates until there is no sensitivity to additional exponentials.
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Determining Nstates ≡ nmax (Cyprus)
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Analysis of Correlation Matrix is Essential
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Dispersion Relation Test for the Λ(1405)
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GE for the Λ(1405)

When compared to the ground state, the results for GE are consistent with the
development of a non-trivial KN component at light quark masses.
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When compared to the ground state, the results for GE are consistent with the
development of a non-trivial KN component at light quark masses.

• Noting that the centre of mass of the K (s, ℓ) N(ℓ, u, d) is nearer the heavier N,
◦ The anti–light-quark contribution, ℓ, is distributed further out by the K and leaves an

enhanced light-quark form factor.
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GE for the Λ(1405)
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GE for the Λ(1405)

When compared to the ground state, the results for GE are consistent with the
development of a non-trivial KN component at light quark masses.

• Noting that the centre of mass of the K (s, ℓ) N(ℓ, u, d) is nearer the heavier N,
◦ The anti–light-quark contribution, ℓ, is distributed further out by the K and leaves an

enhanced light-quark form factor.
◦ The strange quark may be distributed further out by the K and thus have a smaller

form factor.
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GE for the Λ(1405)
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Excited State Form Factors

• The eigenstate-projected three-point correlation function is

Gµ
α(p

′, p; t2, t1) =
∑

x1, x2

e−i p′·x2ei(p′−p)·x1×

× 〈Ω|vα
i (p

′)χi(x2) jµ(x1)χj(0) uα
i (p)|Ω〉

= vαT(p′)G
µ
ij (p

′, p; t2, t1)uα(p)

where

G
µ
ij (p

′, p; t2, t1) =
∑

x1, x2

e−i p′·x2ei(p′−p)·x1 〈Ω|χi(x2) jµ(x1)χj(0)|Ω〉

is the matrix constructed from the three-point correlation functions of the original
operators { χi }.
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Extracting Form Factors from Lattice QCD

• To eliminate the time dependence of the three-point correlation function, we
construct the ratio

Rµ
α(p

′, p; t2, t1) =

(

Gµ
α(p

′, p; t2, t1)Gµ
α(p, p′; t2, t1)

Gα(p′; t2)Gα(p; t2)

)1/2
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Extracting Form Factors from Lattice QCD

• To eliminate the time dependence of the three-point correlation function, we
construct the ratio

Rµ
α(p

′, p; t2, t1) =

(

Gµ
α(p

′, p; t2, t1)Gµ
α(p, p′; t2, t1)

Gα(p′; t2)Gα(p; t2)

)1/2

• To further simply things, we define the reduced ratio

Rµ
α =

(

2Eα(p)

Eα(p) + mα

)1/2 ( 2Eα(p
′)

Eα(p′) + mα

)1/2

Rµ
α
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Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

〈p′, s ′|jµ|p, s〉 =
(

m2
α

Eα(p)Eα(p′)

)1/2

×

× u(p′)

(

F1(q
2) γµ + i F2(q

2)σµν qν

2mα

)

u(p)
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Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

〈p′, s ′|jµ|p, s〉 =
(

m2
α

Eα(p)Eα(p′)

)1/2

×

× u(p′)

(

F1(q
2) γµ + i F2(q

2)σµν qν

2mα

)

u(p)

• The Dirac and Pauli form factors are related to the Sachs form factors through

GE(q
2) = F1(q

2) − q2

(2mα)2
F2(q

2)

GM(q2) = F1(q
2) + F2(q

2)
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Sachs Form Factors for Spin-1/2 Baryons

• A suitable choice of momentum (q = (q, 0, 0)) and the (implicit) Dirac matrices
allows us to directly access the Sachs form factors:

◦ for GE: using Γ±

4 for both two- and three-point,

Gα

E (q
2) = R4

α
(q, 0; t2, t1)

◦ for GM: using Γ±

4 for two-point and Γ±

j for three-point,

|εijk qi | Gα

M(q2) = (Eα(q) + mα)Rk
α
(q, 0; t2, t1)

◦ where for positive parity states,

Γ+j =
1

2

[

σj 0
0 0

]

Γ+4 =
1

2

[

I 0
0 0

]

and for negative parity states,

Γ−

j = −γ5Γ
+
j γ5 = −1

2

[

0 0
0 σj

]

Γ−

4 = −γ5Γ
+
4 γ5 = −1

2

[

0 0
0 I

]
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Finite Volume Dependence of the Λ Spectrum
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