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NONVANISHING BARYON DENSITY

» Dense QCD phase diagram

Finite-density regime is still less well understood...
BESs at RHIC and upcoming facilities (J-PARC, FAIR, NICA, etc) have attracted attention.

One might expect a transition to exotic phases due to high densities.
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INTRODUCTION

NONVANISHING BARYON DENSITY

» Dense QCD phase diagram

Finite-density regime is still less well understood...
BESs at RHIC and upcoming facilities (J-PARC, FAIR, NICA, etc) have attracted attention.
One might expect a transition to exotic phases due to high densities.

Recent theoretical studies predict inhomogeneous phases.
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INTRODUCTION

INHOMOGENEOUS CHIRAL PHASE

» Conventional picture (focused on the chiral phase transition)

T

2nd/X0 Chiral restoration

....... .. CP (@)=0
Chiral condensed

(P) =0 1st

w

= chiral order parameter is constant in space (spatially homogeneously condensed)
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INTRODUCTION

INHOMOGENEOUS CHIRAL PHASE

» Conventional picture (focused on the chiral phase transition)

T

2nd/X0 Chiral restoration

....... .. CP (@)=0
Chiral condensed

(P) =0 1st

w

= chiral order parameter is constant in space (spatially homogeneously condensed)

= what if one allows for the spatial dependence?
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INTRODUCTION

INHOMOGENEOUS CHIRAL PHASE

» Possible picture (focused on the chiral phase transition)

T
Chiral restored
............ f:x:i/}(c/
.......... ‘ (¢)=0
., LP =

Inhomogeneous
0
]<¢> - chiral condensed
2nd
z
q=0

w®

= chiral-transition region is extended (chiral restoration is delayed)

= restoration-picture may be changed (not the conventional 1st-order)

(cf. Nakano-Tatsumi 2005; Nickel 2009; Miiller et al. 2013, etc.]
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OUTLINE

@ INTRODUCTION
© 1D MODULATIONS
@ BevonD 1D

© SUMMARY
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Basic features of 1D modulations




1D MODULATIONS

1D MODULATIONS (NJL resurrs wrriin MFA)

»> NJL-model Lagrangian (chiral limit):

Ly = iy o + G [(1[)1/1)2 + (@i’YsTaw)Q]
» Mean-field approximation (space dependent condensates):

o(Z) = (YY)(@), 7a(@) = WivsTat))(@)das
» Gap equations (minimizing thermodynamic potential Vig):

OVME(T, p;0,ma) _ OVMe(T,p50,ma) 0
9o (@) B Oma (@) B

> need to solve the Dirac eq. for arbitrary o(z), 7(2): [i@ +0(2)+ivsT3ma (@] = 0
> assume the condensate shape based on known analytic solutions for 1+1D systems

(use a possible ansatz for 1D modulations in 341D systems) [Basar-Dunne-Thies 2009; Nickel 2009)
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1D MODULATIONS

1D MODULATIONS (TYP EXAMPLES)

General chiral order parameter: ¢(z) = (Y1p)(x) + i(PivsTah)(z) = A(z)e?®

» DCDW modulation: ¢(z)=Ae??*  [Nakano-Tatsumi 2005; Dautry-Nyman 1979; Flude-Ferrell 1964)

(Y1) (2) = Acos(qz), (YivsTsy)(2) = Asin(qz)

» RKC modulation: ¢(z)=A(z) [Nickel 2009; Thies 2006; Larkin-Ovchinnikov 1964)

2A4/v 2Az
1 +ﬁsn 14++v

(A: amplitude, ¢: wavenumber, v: elliptic modulus)

Bu(z) = \u)  (Birsmav) (=) = 0

> Dual chiral density wave (DCDW) > Real kink crystal (RKC)

() v e[04]

i(Piystay)
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1D MODULATIONS

1D MODULATIONS (NJL resurrs wrriin MFA)

»> NJL-model Lagrangian (chiral limit):

Ly = iy o + G [(1[)1/1)2 + (@i’YsTaw)Q]
> MFA (condensates):

o(Z) = (YY)(@), 7a(@) = WivsTat))(@)das
» Gap equations (minimizing thermodynamic potential Vig):

OVME(T, p;0,ma) _ OVME(T, p1; 0, 7a)
9o (@) B Oma (@)

=0

> obtain gap solutions by minimizing V\r w.r.t. variational parameters (A, g, v)
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1D MODULATIONS

1D MODULATIONS (NJL RESULTS WITHIN MFA)

> DCDW: 2YmE(éncow) — & RKC: @YME(dRrKO) —
OA,q OA,v
7 100
0.20 — A=660.37MeV ! [Nakano-Tatsumi(2005)] — [Nickel(2009)]
80
0.15 — 3
< F | % 60 restored
F t restored 3 =3
0.10 E ] S a0
0.05 — 3 20 homo. cond.
homo. cond. B
0.00 y inhomo.” 2] 0
B0 oas: | o4s.: o050 11 240 260 280 300 320 340 360
0.40 0.45 WA 0.50 1 (MeV)

> free energies for DCDW and RKC condensates (T = 0)

15 (1=0) Buballa-Carignano(“15)
gii;;vmd = RKC is energetically favored over DCDW
10 Homo. 1 within MFA in the chiral limit

1 => but the situation is reversed at veB # 0
[cf. Frolov et al. 2010, Tatsumi et al. 2014]

p (MeV/fm®)
o

=> what if fluctuations are taken into account?

300 305 310 315 320 325 330
U (MeV)

OF CHIR



1D MODULATIONS

1D MODULATIONS (BEYOND MEAN-FIELD LE

> DCDW ground state: ¢l = (A cosqz,0,0,Asingz)
P introduce fluctuations around ¢q: [Lee-Nakano-Tsue-Tatsumi-Friman 2015]

A cos(gqz+B3) cos B9 cos B1

_ ) _ A cos(qz+B3) cos B sin B —
B() = U(Bi)go(z) = | Soonlortom cons (= ¢o + 60)

Asin(qz+83)
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1D MODULATIONS

1D MODULATIONS (BEYOND MEAN-FIELD LE

> DCDW ground state: ¢l = (A cosqz,0,0,Asingz)
P introduce fluctuations around ¢q: [Lee-Nakano-Tsue-Tatsumi-Friman 2015]
A cos(gqz+B3) cos B9 cos B1

_ ) _ A cos(qz+B3) cos B sin B —
B() = U(Bi)go(z) = | Soonlortom cons (= ¢o + 60)

Asin(gz+83)
P dispersion relation for gapless modes:
w? ~ak? + b(k?)?

=> spatially anisotropic (owing to the lack of E?-term)

=> symmetric under rotations about x-y (transverse) directions, as in smectic liquid crystals
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1D MODULATIONS

1D MODULATIONS (BEYOND MEAN-FIELD LEVEL)

> DCDW ground state: ¢l = (A cosqz,0,0,Asingz)
P introduce fluctuations around ¢q: [Lee-Nakano-Tsue-Tatsumi-Friman 2015]
A cos(gqz+B3) cos B9 cos B1

_ ) _ A cos(qz+B3) cos B sin B —
B() = U(Bi)go(z) = | Soonlortom cons (= ¢o + 60)

Asin(qz+83)
P dispersion relation for gapless modes:
w? ~ aki + b(l_c‘Q)2
=> spatially anisotropic (owing to the lack of E?-term)

=> symmetric under rotations about x-y (transverse) directions, as in smectic liquid crystals

P impacts of fluctuations:
A cos(gz)e” i (83)/2
0 IR
(¢(2)) = (U(Bi)¢o(2)) =~ 0 — 0 (destroyed)
ASin(qZ)87<ﬁ§>/2

where Gaussian fluctuations are logarithmically divergent at long-wavelength (IR) limit

3 IR .
(Bi_y 2.8) =~ saz S (gw;%w% = oo (log div)
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1D MODULATIONS

1D MODULATIONS (BEYOND MEAN-FIELD LEVEL)

> Landau-Peierls instability

» The DCDW phase is not expected to exist due to thermal fluctuations

(¢(2)) =0

= but exhibits quasi-long-range order with algebraically decaying correlation function

with the nonzero power depending on T'
(6(282)-¢*(0)) ~ 3A%cosqz(z/20)" /™0 z0 = 2¢/A”

(p(zi€r)-¢*(0)) ~ %AQ(%/ZO)_QT/TO @0 = 1/A, To = 32mag,1A%g

may be practically realized as a quasi-1D phase as in LCs  [Lee-Nakano-Tsue- Tatsumi-Friman 2015)

» The same applies to the RKC phase (Hidaka-Kamikado-Kanazawa-Noumi 2015)

» There is no true LRO for 1D, but 2D/3D may be realized (cf. Landau-Lifshitz 1969)
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Beyond 1D modulations




BEYOND 1D

BEYOND 1D MODULATIONS (2D/3D MODULATIONS)

> no known analytic solutions for 2+1D or 3+1D systems (unlike purely 141D systems)
> assume possible ansitze for 2D/3D and compare their free energies with 1D




BEYOND 1D

BEYOND 1D MODULATIONS (2D/3D mobuLaTions)

> no known analytic solutions for 241D or 341D systems (unlike purely 1+1D systems)
> assume possible ansitze for 2D/3D and compare their free energies with 1D
> there are a few studies for 2D /3D modulations (Abuki et al. 2012; Carignano et al. 2012)

around LP T=0 limit

[Abuki-Ishibashi-Suzuki(2012)] [Carignano-Buballa(2012)]

T
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BEYOND 1D

BEYOND 1D MODULATIONS (2D/3D MODULATIONS)

» one knows only the area around the LP or at 7'=10

= multidimensional modulation may be favored in different areas

T

what about ?

U

T=0

1D tends to be favored
around the LP or at T=0

LEE (Kyoro U) MULTIDIME] E OF CHIRAL CRYSTALS IN QU



BEYOND 1D

BEYOND 1D MODULATIONS (2D/3D mobur

TIONS)
» some remarkable results in different contexts

= formation of multidimensional crystalline structures is predicted

Qycs (/cs)

Crystalline CSC

2D superconductor

1D ——
—_—

\— triangular

|

\

Hadron

square

Nuclear

h |
BCS iexagonal

(uniform)

05 1 L
HeHe [ By
[shimahara 1998; Matsuda-Shimahara 20071

hadrons

CFL

Hoaryon
[Bowers-Rajagopal 2002]

[Kojo et al. 2012]

CSC (BCC
Pi cond. Bec)

H

Meson field £

(cos kz + cos ky) g
cos kz ),

Gpe = coskr cosky cos kz 0/,
[Migdal-Markin-Mishustin 1976]

(c08 kz + cos ky + cos kz) 1
favored

PR

[Cao-He-Zhuang 2015)
s

T o0 Coss oo om om0 0 oot

(Eu-oy)/0




BEYOND 1D

BEYOND 1D MODULATIONS (2D/3D mobuLaTions)

> another possible way to find the multidimensional crystalline structures

= Thomas-Fermi approximation

ETFA — \/ —|-Vo'(r) + ...

effective derivative term

6ETFA
= 0 for given ¢(x);1D

Sa(r) a(xy);2D
o(x,y,2);3D

= using the expression for F, obtained from the TFA
= explore the lowest free energy for given 1D, 2D, 3D ansatze
= need to effectively extract derivative terms of the condensate by scale trans.
= but no self-consistency here
HpYo = EYq
(1/71,[)) = 0(T) condensate shape is fixed

. LEE (Kyoro U) MULTIDIMENSION. TURE OF CHIRAL CRYS'



BEYOND 1D

BEYOND 1D MODULATIONS (2D/3D MODULATIONS)

> self-consistent way to explore multidimensional structures w/o any ansitz

NJL model (w/RKC; A(r))
A(l‘)2

Lyr = Liﬁyo(iUO i HD) Y — 1G,

oo —io -V A(r)
DWeyl = AW 0.V

0= __\',A\‘,.‘l'Z In (2('4).\’11 (% >>

using the finite-difference method
Hpt = Extr, & = {fa(2), 9a(2)}
Enfa+ifl, — A(z)gn=0
—Eng+ign+A(2) fn=0
A(z) = =2Gs 3 (|fal* = |onl?)

both the discretized E and the corresponding { f, g} can be simultaneously obtained

A(r) = —2G(D)(r)

> Ejfor{f;,g:} — A@®

( cf. a similar way — finite-mode approach [Heinz et al. 2016) )

. LEE (Kyoro U) MULTIDIMENSI JRE OF CHIRAL CRYS'



BEYOND 1D

BEYOND 1D MODULATIONS (2D/3D MODULATIONS)

> self-consistent way to explore multidimensional structures w/o any ansitz

Before investigating arbitrary A(r)
= need to correctly reproduce the known result in 141D systems [Basar-Dunne-Thies 2009]

141D Dirac eq
Hpy = EYp
(_l?x 4A ) f =E f A(2): given
A idy/\g g
discretized Dirac eq. new A@2)
f 1~ f'—l g
e Y |
. .gi+1 — Ji-1 i
Afi + L# = Eg; i
£
f _ r o
7 - — g
g g .
3 \
Hermitian /)
O Ve
eigenvalues for eigenvectors
av

thermodynamic pot.

(spatial discretization ~100 : need to solve a 200x200 Hermite matrix)

OF CHIR



BEYOND 1D

BEYOND 1D MODULATIONS D /3D MODULATIONS)

> self-consistent way to explore multidimensional structures
A(z) for a well potential

analytic solution

(n+ 1)272h?

E, = 8ma? (n=0,1,2,--)
excited state JET, VEn/Eo
0 7.56645E+01  1.00000E+00
02 : : : . : 300 1 1.51288E+02  1.99946E+00
2 2.26831E+02  2.99785E+00
015 b 1 1 20 3 302252E+02  3.99464E+00
4 377511E+02  4.98927E+00
01 F \ fin=s 5 452567E+02  5.98123E+00
\ 6 5.27380E+02  6.96998E+00
g oot s 7 6.01910E+02  7.95499E+00
g S Lo E 8 6.76117E+02  8.93573E+00
L T O O R 9 7.49961E+02  9.91167E+00
A A T I S () 10 8.23403E+02  1.08823E+01
s I . 11 8.96402E+02  1.18471E+01
& 12 9.68920E+02  1.28055E+01
e & 13 1.04092E+03  1.37570E+01
b Y 14 1.11236E+03  1.47012E+01
s s 5 4 o ry 15 1.18320E+03  1.56374E+01

z[fm] 16 1.25340E+03 1.65653E+01
17 1.32294E+03 1.74842E+01

CHIRAL ¢



BEYOND 1D

BEYOND 1D MODULATIONS (2D/3D mobutL

> self-consistent way to explore multidimensional structures

A(z) for a sine potential

amplitude

03

02
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0.1

02

03

- lsae

1500

1000

500

A [MeV]

TIONS)
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SUMMARY

Towards a multidimensional structure

» inhomogeneous chiral phases with 1D modulations:

> within MFA and beyond (fluctuations)
> Landau-Peierls instability (no true LRO)

» inhomogeneous chiral phases with 2D/3D modulations:

» disfavored around LP and at T'=10
» nontrivial in different areas

» TFA and self-consistent method

» reproduce 1+1D — 2+1D

» additional consideration:

> Coulomb interactions, S-equilibrium, charge neutrality, etc
> may lead to the so-called “chiral pastas”?

MULTIDIMENS] )F CHIRAL CRY:



Thank you for your kind attention!
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SUMMARY

INHOMOGENEOUS MECHANISM

Possible pairing pattern in quark matter

E

T Poa ~ 0 Puowa ~ 2Pr ~ 21

~Pr

qq pairing in vac.

disfavored at large p \
(large energy cost) oy
-

qh pairing at intermediate p qh pairing at intermediate p

~Pr

less favored than DW type Favored
(large relative momentum disturbs  (small relative momentum
to form a bound state) could form a bound state)
exciton type density wave type
qq pairing at very high u [cf. kojo et al. NPA 2010]
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SUMMARY

INHOMOGENEOUS MECHANISM

Key mechanism: Nesting of the Fermi surface (Overhauser effect)

[cf. Nakano-Tatsumi 2005)

gap V=V (equ +e_m)A elkx Hexle( +g}(k:q)r
f s
€F g
[ B k v Near the level crossing (gk ~ 5ch)3
[FCIN B {Sk v, j
H= ¢
Vq Eieq
3 1 2 2
Particle-hole instability E; = 5 [E,\, +E1eg To (&, — Eieg) +AV }
0 ke q=2ke

W) = (UrY) + (Viyr) ~ '
E(p) E+(p)
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SUMMARY

INHOMOGENEOUS CHIRAL PHASE

» In a background magnetic field

T
Chiral restored
] @) =0
T z
Chiral restored
Chiral condensed
] (@)=0 @) 0 Inhomogeneous
- | - chiral condensed
Lp z It
q=0 "
s M w
{_‘7’_“‘1 Inhomogeneous :
Z  chiral condensed [ e
q+0 (DCOW)

(08)1/2

= favored in an external magnetic field (due to nontrivial topology/anomaly)

[cf. Frolov et al. 2010; Tatsumi et al. 2014; Nishiyama et al. 2015)




INHOMOGENEOUS CHIRAL PHASE

» In a background magnetic field

Chiral restored

](4)%0

o, LP .

T I Chiral restored

1 Chiral condensed
Inhomogeneous
T chiral condensed
=
k]
X0 =
a0 me=5MeV L AN ®
L o
q=0 & et o
a»0
—
VeB = 1GeV.
( 08)1/2 M

= favored in an external magnetic field (due to nontrivial topology/anomaly)

[cf. Frolov et al. 2010; Tatsumi et al. 2014; Nishiyama et al. 2015; Yoshiike et al. 2015; Kashiwa et al. 2015)
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SUMMARY

INHOMOGENEOUS CHIRAL PHASE

» Compact stars
A dense cold matter is relevant for compact stars.
Inhomogeneous chiral condensates may be realized in the core region.
This may also have astronomical implications (e.g., cooling, starquake, etc.)

Envelope  Outer crust: nuclei+e™

Inner crust: nuclei, free neutrons+e™
"Pasta” nuclei
Core 111170"10
‘Cep,
Hyperons ? Coug
Meson condensate ? ark ,
Natye

Quark-hadron mixed phase ? cry
Uniform quark matter 2

+ Crystalline chiral condensates?

Uniform
nuclear
matter

npre e

Center

‘ p~pg=27X10M4gem3  p~3-5pg

~10 km |
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SUMMARY

TRUE LRO

[> Possibilities of long-range order
> T =0 limit (or sufficiently low temperatures)

(#) = (b0 +3d¢) #0 (LRO)

=> stable against quantum fluctuations  (not diverge: (82)c [ d3kw—150)

P External magnetic fields
w? ~ ak? +bk2 + O((F?)?) for B#0 (b B)  (cf. w? ~ ak2 + O((k2)2) for B = 0)

=> modified dispersion (explicit rotational symmetry breaking: k?-term)
=> could be stabilized (improved: (82)x T'(Aw+0O(AR)) # 0)

P Finite-size effects
long wave-length fluctuations are cutoff by the system size (effectively stabilized)
IR cutoff as system size: Ar=L"1 (no log div: (82)x T In(O(1/AR))~T In(O(L)) # 0)

= QLRO can effectively mimic a true LRO (depending on L or experimental resolutions)
[cf. Als-Nielsen et al. 1980; Baym-Friman-Grinstein 1982]

P> Two- and three-dimensional modulations (inferred from Landau-Peierls theorem)
similar suppression of IR div can be expected

=> stabilization could occur

To U)



SUMMARY

MULTIDIMENSIONAL STRUCTURE

> one knows only the areas around a LP and at T'=10
= multidimensional chiral crystals may be realized in different areas

[Karasawa-Lee-Tatsumi 2016]

Quantum fluc. (Dyugaev)
Thermal fluc. (Brazocskii)
Both and improved (KLT)

p
< o st
S 1%t order

what about ? T )
. et
- - 500 et
order et

restored

inhomo

N (MFA) :
i HIN
I

Incidentally, fluctuation effects give rise to a weakly 1st-order p.t. (Brazovskii-Dyugaev effect)

[Brazovskii 1975; Dyugaev 1975; Hohenberg-Swift 1995; Ohashi 2002; Karasawa-Lee-Tatsumi 2016; Tatsumi-Yoshiike-Lee]

=> may cause multidimensional structures?
(as in mesoscopic structures associated with 1st-order trans.)




SUMMARY

PARAMETRIZATION

> General fluctuations on the DCDW phase with ¢9 = A (cos gz, 0,0, sin qz)T

cos(qz + gg) cos gz c_osgl . COS(()qZ)
0 = A+ SEimmaE™” | = @U@ |
sin(gz + fa) sin(qz)

§: amplitude fluctuation, B = {B1, B2, B3}: NG modes (parameters: 4D-sphere of chiral circle)

U(B) := e L with axial isospin generators L,

P " z-direction displacement” = " 33-rotation” under the above parametrization
cos qz —PB3singz
0 cos qz
p=a+0) | o |+al DT Lok 5is6%)
sin gz B3 cos qz

= we can identify linear fluctuations as pions in background inhomogeneous phase

Plugging this parametrization ¢ into L,

= we can obtain a low-energy effective theory for fluctuation fields 6(x) and 3(z).
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SUMMARY

LOW ENERGY COLLECTIVE EXCITATIONS

> Dispersion relations
> for mixing -3
2o\ 2 . .
w2~ M2 +agy {u§+k§ n <k2) } + ag 4 A2K? + AR2K2 + BE?
—5\ 2 —.
w2 ~ ags {uﬁ_kﬁ + (k2) ] — AR2k2 — BEK?
> for Br(= 51,2)
—o) 2
Wi = aen {4q2k§+(k2) }+0(k6)

where A = 4q2A2aG,2(4M2a6_1 — A4a6_2a644)/M4, B = 7(2qA2a6_2)4/M6
uzi = 4612[1 + a§.2A4/a6_1M2] (>0)

16 — INPC 6 - Lee (Kyoro U) MULTIDIMENSI “TURE OF CHIRAL CRYSTALS IN QUA!



IMPACTS OF LOW-ENERGY FLUCTUATIONS

> consider low energy fluctuations on the order parameter
(A +0)U(Bi)do) = AU(Bi)do) + (U (B:)¢o)

cos(qz) exp(— 3, (67)/2)
where  (U(B)do) = | o
sin(gz) exp(—(83)/2)
— sin(q2)(383) exp(— 2, (87)/2)
GUBNéo) = |
cos(q2)(8f3) exp(—(63)/2)

Here, 2nd-order fluctuations

3
<5ﬁ3) =0, (/81 2) = 2A2 f (271.)3 %v <B§> = ﬁ f (gﬂ.l)cs wlz

= (BE,.3)<f(T/w?)d®k: log div (IR).

[ fluctuations are all longitudinally divergent due to soft modes in transverse direction ]
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