Neutral meson and direct photon measurement in pp and Pb–Pb collisions at midrapidity with the ALICE experiment at the LHC

Lucia Leardini

Physikalisches Institut Heidelberg on behalf of the ALICE Collaboration

International Nuclear Physics Conference Adelaide, Sept. 11-16, 2016

Quark-Gluon Plasma (QGP) in A-A collisions

QGP forms in A-A collisions: hot and dense medium, strongly interacting

- collective expansion
- deconfined quarks and gluons, interact with medium
- parton interactions result in energy loss (jet quenching): can be highlighted through the comparison with pp collisions (vacuum scenario)

Neutral mesons as probes of the QGP:

- in pp collisions, allow the study of particle production and constraint of fragmentation functions
- in Pb–Pb collisions, give insights on the bulk properties of the medium, collective effects and particle energy loss
- in both cases, the comparison to models is used to test predictions and improve the theoretical description
- π^0 and η are input for background estimates to direct photons

Direct photons

- do not interact with the medium, thus carry unmodified information about early stages of the collisions
- photons are emitted throughout collision evolution
- hard to measure above a large electromagnetic background

The ALICE experiment

Central barrel: $|\eta| < 0.9$

V0: multiplicity estimation

ITS: vertex finding and tracking

TPC: tracking and particle identification

PHOS and EMCal: calorimetry

Photon detection with the ALICE experiment (RUN 1)

- PHOS calorimeter:
 - PbWO₄ crystals
 - $|\eta| <$ 0.13, 260 $^\circ < \phi <$ 320 $^\circ$
- EMCal calorimeter:
 - Pb/scintillator sampling calorimeter
 - $|\eta| <$ 0.7, 80 $^\circ < \phi <$ 180 $^\circ$
- Photon Conversion Method (PCM):
 - ITS and TPC
 - $|\eta| <$ 0.9, 0° $< \phi <$ 360°
 - conversion in detector material:

 $_{
m >}~X/X_0 = (11.4{\pm}0.5)\%$ (| $_{\eta}$ | <0.9, R<180 cm)

- $_{\triangleright}$ conv. probability $\sim 8\%$
- \rightarrow Photon candidates are extracted from V⁰ (neutral secondary vertex particles) sample

π^0 and η in pp collisions

Neutral meson invariant cross section (PCM + PHOS)

 \triangleright η compared to NLO pQCD by W. Vogelsang (PDF: CTEQ6M5, FF: AES) \triangleright reference at 2.76 TeV is used to calculate nuclear modification factor (R_{AA}) in Pb-Pb at the same center of mass energy

$\pi^{\rm 0} \mbox{ and } \eta \mbox{ in Pb-Pb collisions}$

π^0 from 2010 data (PCM + PHOS)

$$R_{AA}(p_T) = \frac{\mathrm{d}^2 N/\mathrm{d} p_T \mathrm{d} y|_{\mathrm{AA}}}{\langle T_{AA} \rangle \times \mathrm{d}^2 \sigma/\mathrm{d} p_T dy|_{\mathrm{PF}}}$$

- $\langle T_{AA} \rangle$: nuclear overlap function, related to the pp cross section via $\langle T_{AA} \rangle = \langle N_{coll} \rangle / \sigma_{inel}^{pp}$
- suppression due to interaction with medium is larger for more central collisions

Neutral pion R_{AA} collision energy dependence

- **ALICE** $\pi^0 R_{AA}$ in 0-10% central collisions compared with results from **PHENIX** (PRL 109 (2012) 152301 and PRL 101 (2008) 232301) and **WA98** results (PRL 100 (2008) 242301)
- *R*_{AA} supression stronger for higher collisions energy: decrease due to higher energy density dominates over increase expected from harder initial parton spectra
- maximum value of the ratio also shifts towards lower p_T going to higher energy
- at high p_T, R_{AA} is expected to rise due to a flatter spectra in A–A than in pp → region accessible with 2011 Pb–Pb data

Neutral mesons from 2011 data (PCM + EMCal)

 \rhd increased luminosity Pb–Pb run in 2011, ${\sim}10$ times more statistics \rhd combined PCM and EMCal measurement

 $ightarrow \pi^{0}$ consistent with 2010 data, measurement extended to 20 GeV/*c* First η measurement in Pb–Pb at the LHC

η/π^0 ratio in Pb–Pb 2011 data (PCM + EMCal)

- η/π^0 measured in Pb–Pb collisions in two centrality classes
- compared to other ALICE results: η/π^0 in pp at 7 TeV and to K^{\pm}/π^{\pm} in 0-10% Pb–Pb at 2.76 TeV
 - comparison could highlight differences due to the presence of a hot and dense medium and from particle flow (expected to be similar for η and kaons)
 - cannot differentiate with current uncertainties

η/π^0 ratio in Pb–Pb 2011 data (PCM + EMCal)

- $\eta/\pi^{\rm 0}$ measured in Pb–Pb collisions in two centrality classes
- compared to other ALICE results: η/π^0 in pp at 7 TeV and to K^{\pm}/π^{\pm} in 0-10% Pb–Pb at 2.76 TeV
 - comparison could highlight differences due to the presence of a hot and dense medium and from particle flow (expected to be similar for η and kaons)
 - cannot differentiate with current uncertainties
- pQCD NLO calculation for 0-10% cent. class agrees within uncertainties $\rightarrow p_T$ region 4–6 GeV/*c* sensitive to initial transport coefficient (= parameter describing energy loss in medium)

Direct photons in Pb–Pb collisions

Direct photons in Pb-Pb collisions

INPC 2016

Neutral mesons and direct photons with the ALICE experiment

 \triangleright inclusive photon spectra measured with combined PCM + PHOS (PLB 754 (2016) 235-248) in 3 centrality classes with 2010 Pb–Pb data

 \triangleright R_{γ} excess at high p_{T} for all centralities

 \rhd inclusive photon spectra measured with combined PCM + PHOS (PLB 754 (2016) 235-248) in 3 centrality classes with 2010 Pb–Pb data

 \triangleright R_{γ} excess at high p_{T} for all centralities

 \triangleright at low p_T , \sim 20% excess in 0-20% and \sim 9% in 20-40% due to thermal radiation of the medium

 \rhd inclusive photon spectra measured with combined PCM + PHOS (PLB 754 (2016) 235-248) in 3 centrality classes with 2010 Pb–Pb data

 $\triangleright R_{\gamma}$ excess at high p_T for all centralities

 \triangleright at low p_T , \sim 20% excess in 0-20% and \sim 9% in 20-40% due to thermal radiation of the medium

 \triangleright in agreement with NLO/JETPHOX pQCD above 5 GeV/c

Direct photons in 2010 Pb–Pb data (PCM + PHOS)

 \triangleright direct photon spectra measured in 3 centrality classes in the range $0.9 < p_T < 14 \text{ GeV}/c$

 \triangleright at low p_T , upper limits with 90% CL given for more peripheral collisions

 \triangleright comparison with pQCD NLO and JETPHOX shows again good agreement above 5 GeV/*c* and excess yields for 0-20% and 20-40% central collisions

Comparison direct photon spectra ALICE - PHENIX

ALICE results compared with PHENIX direct photon measurement in Au–Au at 200 GeV (PRL104 (2010)132301, PRC91/6 (2015) 064904)

 \triangleright exponential fit to low p_T excess: inverse slope parameter larger at higher collision energy and consistent in both centrality classes

Direct photon spectra comparison to models

Several models, all assume QGP formation and include pQCD photons at high $p_T \rightarrow$ have different space-time evolution treatment:

- **Paquet et al.**: 2+1 viscous hydro with IP-GLASMA initial conditions, $\tau_0 = 0.4 \text{ fm}/c$, $\langle T_{\text{init}}^{0-20\%} \rangle = 385 \text{ MeV}$
- Linnyk et al.: off-shell transport, microscopic description of evolution
- v. Hees et al.: ideal hydro with initial flow, $\tau_0 = 0.2 \text{ fm}/c$, $T_{\text{init}}^{0-20\%} = 682 \text{ MeV}$
- Chatterjee et al.: 2+1 hydro, fluctuating initial conditions, $\tau_0 = 0.14 \text{ fm}/c$, $T_{\text{init}}^{0-20\%} \approx 740 \text{ MeV}$

Neutral mesons and direct photons are measured in ALICE with independent methods (calorimeters, EMCal and PHOS, and photon conversions, PCM)

\triangleright results in pp

- neutral pion and η meson cross sections measured at several collision energies with combined PCM and PHOS analysis
- comparison with PYTHIA and NLO pQCD calculations:
 - describe well intermediate $p_{\rm T}$ region (below 5 GeV/c)
 - predict harder spectra at high $p_{\rm T}$

\triangleright results in Pb–Pb at 2.76 TeV

- neutral mesons measurements:
 - π^0 measured with PCM + PHOS (2010 data) and PCM + EMCal (2011 data) and η measured with PCM + EMCal (2011 data)
 - $\pi^0 R_{AA}$ has larger suppression in more central collisions and its magnitude scales with the collision energy
 - with current uncertainties, no clear dependence of η/π^0 on collision system, mass or s quark content observed
- direct photon measurement:
 - inclusive and direct photon spectra measured in 3 centrality bins
 - below $p_T = 3 \text{ GeV}/c$, direct photon excess observed for 0-20% and 20-40% \Rightarrow thermal radiation of the medium
 - photon spectrum above 5 ${\rm GeV}/c$ in agreement with NLO pQCD

Outlook

Many papers on track for publication:

- Neutral mesons analysis in **pp at 8 TeV** with combined PCM, EMCal and PHOS analyses
- Neutral mesons analysis in **p-Pb at 5.02 TeV** with combined PCM, EMCal and PHOS analyses (not discuss in this presentation)
- Neutral mesons analysis in Pb–Pb at 2.76 TeV with combined PCM, EMCal and PHOS analyses

Updates on the direct photon analysis:

 additional inputs from measured particle spectra in comparison to the previous cocktail simulation

Ongoing LHC RUN2 analyses:

- neutral mesons and direct photons in pp at 13 TeV and 5 TeV
- neutral mesons and direct photons in Pb–Pb at 5 TeV

 \Rightarrow ongoing studies to improve material budget estimation will help reduce the related systematic uncertainty

Back up

Luminosity 2010 vs 2011

 \Rightarrow with large statistics collected in 2011 measurement of differential invariant cross section is possible

Invariant mass reconstruction

Photon candidates are combined into pairs

Neutral pion peak position and width

pp

ALICE performance paper: Int. J. Mod. Phys. A 29 (2014) 1430044

25 25 peak width (MeV/c²) мс pp s = 7 TeV data beak width (MeV/c²) data мс Pb-Pb s_{NN} = 2.76 TeV PCM (FWHM/2.36 PCM (FWHM/2.36 centrality 0-10% 20 PHOS (o) EMCal (o) 20 PHOS (o) EMCal (o) 15 15 10 10 5 0 155 155 peak position (MeV/c²) peak position (MeV/c²) data MC data MC PCM PHOS 50 150 PHOS EMCal EMCa 145 145 140 140 135 135 130 130 b) 125 125 10 p_ (GeV/c) p_ (GeV/c)

ALI-PUB-72666

INPC 2016 Neutral mesons and direct photons with the ALICE experiment

Pb-Pb

Neutral pion spectra in pp collisions (PCM + PHOS)

The NLO pQCD calculations are repeated considering the additional constraint given by 8 TeV results \Rightarrow large improvement

INPC 2016

η/π^0 ratio in $\sqrt{s}=$ 2.76 and 7 TeV (PCM + PHOS)

- η/π^0 ratio compared with pQCD NLO theory by W. Vogelsang
- η , PDF: CTEQ6M5, FF: AES π^0 , PDF: CTEQ6M5, FF: DSS
- at both 7 and 2.76 TeV an increasing trend can be observed up to 2 GeV/c
- above 2 GeV/c the ratio flattens, as the NLO calculations suggest

DCZW prediction

NLO pQCD theoretical prediction of η/π^0 ratio in Pb–Pb collisions at 2.76 TeV according to DCZW (PLB 750 (2015) 390-395)

 τ_0 is the initial time of the QGP medium \hat{q}_0 initial values of the jet transport parameter \rightarrow the larger \hat{q}_0 is, the stronger the jet-medium interaction will be

Assumptions for decay photon cocktail

- $\eta \& \omega$ meson only measured in pp, φ meson measured in pp & 0-10% Pb-Pb collisions
- *m_T* scaling overestimates yield at low *p_T* consistently for all 3 mesons
- Systematic uncertainties on cocktail 5-10%

