The Facility for Antiproton and Ion Research

Karlheinz Langanke GSI Helmholtzzentrum Darmstadt TU Darmstadt

INPC, Adelaide, September 15, 2016

Google Earth: FAIR in 2022

Accelerator complex

FAIR

International Participation in FAIR

- FAIR governed by international convention
 - 9 shareholders + 1 assoc. partner (orange)
- Scientists from all over the world are engaged
 - More than 200 institutions from 53 countries are involved with their scientists (orange + blue)

Civil construction execution plan

The GSI/FAIR Joint Management

Paolo Giubellino Ursula Weyrich Jörg Blaurock

Experimental Collaborations

atom-, bio-, plasma physics, material research

nuclear- and quark-matter

exotic nuclei and nuclear astrophysics

APPA

hadron structure and dynamics

PANDA

FAIR - Universe in the laboratory

REISEBERICHT Die Osterinsel im Schatten des Mondes FINSTEIN/@HOMP Pulsare am heimischer Rechner entdecker

Neutron stars – Universe's lab of exotic matter

CBM nuclear matter at high densities

APPA ions in extreme electro-magnetic fields

PANDA hyperon-hyperon interaction NUSTAR neutron-rich nuclei

APPA – Atomic Physics (SPARC)

Exploiting storage rings for

- electron spectrum of highly charged ions
- correlated multi-body dynamics for atoms and ions
- test of fundamental symmetries
- QED in non-perturbative regime

NUSTAR - Origin of elements in the universe

2

Potential r-process sites

Neutrino-driven wind from a nascent neutron star in a supernova explosion

Woosley et al.

Neutron star mergers

Rosswog, Thielemann et al.,

FAIR asset – rings and instrumentation

NAS 22 2000

SPt Dt St

R³B

Parameters:

- all elements (H through U)
- intensity > 10¹¹ ions/sec (before target)
- rigidity 20 Tm
- fast (µs) and slow extraction

production target

ILIMA

Frequency measurement

Measured mass spectrum

Nuclear decays in storage rings

Time-resolved Schottky mass spectrometry is perfect tool to study nuclear decays in the storage ring

FAIR contribution: masses

Impact of nuclear half-lives

Impact of nuclear half-lives on r-process abundances

Knowing the half-lives we will constrain the dynamics of the supernova explosion

Pioneering experiment to prove nucleosynthesis studies in storage rings

- New UHV grade silicon detector (GUF)
- New detector manipulator (Uni Giessen)
- 5-7 MeV/u ¹²⁴Xe⁵⁴⁺ ions stored in ESR
- Stable, dense H₂ target
- Successful proof-of concept (also for CRYRING)

Astrum Verbundforschung

Bundesministerium für Bildung und Forschung

CBM – Searching for landmarks in the phase diagram of matter

What do we know?

- Chemical "freeze-out" from measured particle yields analyzed with Statistical Hadronization Model
- LQCD: Crossover transition at small µ_B
- What is predicted?
 - Possible 1st order phase transition(s) and critical point? at large μ_B
 - ➤ Disappearance of the condensate at high T and high density → leading order parameter for χ symmetry restoration

Ultrarelativistic heavy-ion collisions

CBM: advantage over other experiments

Key experimental requirement: operation at unprecedented high rates

CBM physics program:

search for phase boundaries and for new forms of QCD matter

CBM observables looking deep into the fireball:

- dileptons and fluctuations
- charmonium production

PANDA – Exploring QCD

LQCD (HSC collaboration, Lattice 2013) predictions for charmonium states

Approaches from theory:

- Lattice QCD
- Effective field theories

Experimental tools:

- ➢ e⁺e⁻ (e.g. BELLE2, BESIII)
- μ/e/γ p,N (e.g. Compass, GlueX)
- ➢ pp (e.g. LHCb)
- ➢ pp_{bar} (e.g. PANDA)
 - hadron spectroscopy
 - hadron structure and Form factors
 - hyper nuclei

The PANDA contribution

Understanding binding among quarks and gluons:

- Gluonic excitations
- Exotic hadrons
- Exotic quantum numbers

Low background high precision and exclusive channels All quantum numbers accessible due to annihilation mechanism States can be formed directly high mass resolution

Line-shapes

pp_{bar} scans for excitation curves

27

The PANDA Detector

Midterm Research Program

Goals

- forefront research by employing and testing new FAIR detectors
- exploiting upgraded GSI accelerator facilities
- education of young scientists
- maintain skills and expertise
- serve national and international user community

Start of "FAIR Phase 0"

works at GSI Campus for APPA, NUSTAR and restricted for CBM (HADES)

CBM and PANDA need participation in experiments at external research facilities

ALICE \rightarrow participation in physics analysis of LHC Run 2 and upgrade for LHC RUN 3

GSI Accelerator and Experimental Facilities

GSI Accelerator and Experimental Facilities - improved accelerator performance after upgrade

Ion Sour	ces	Uranium (the "Gold" of GSI)		SIS operation today	SIS pperation after upgrade (2018- 2021)	SIS operation booster mode >2021	lerator AGeV
all element	nts	Reference Ion		⁷³⁺ U	U ⁷³⁺	U ²⁸⁺	ragment
		Maximum Energy		1 GeV/u	1 GeV/u	0,2 GeV/u	enarator
		UNILAC Current		1 emA	3 emA	15 emA	
Ŕ		Maximum Intensity per Cycle		4·10 ⁹	1,5·10 ¹⁰	1,5·10 ¹¹	
		Magnet Cycle	Fast Extraction	2,2 s 0,46 Hz	0,37 s 1 Hz (*)	0,37 s 2,7 Hz	
	In		Slow Extraction (5 s Spill)	7,2 s 0,14 Hz	5,37 s 0,19 Hz	-	Ring ^s
		Maximum Intensity per Second	Fast Extraction	1,8·10 ⁹ /s	1,5·10 ¹⁰ /s	3·10 ¹¹ /s (**)	& exotic nucle
		Maximum Intensity per Second	Slow Extraction	5,6·10 ⁸ /s	2,8·10 ⁹ /s	-	
		Slow extr. efficiency		50 %	75%		
	•			Y			-

FAIR Phase 0: Research opportunities with new equipment starting in 2018

Exploiting new FAIR facilities,

maintain skills and expertise

FAIR Phase 0 APPA: Sophisticated & Versatile Instrumentation

FAIR

Observables: Photons, electrons, positrons, ions

Traps

X-ray optics, channel-cut crystals

Laser systems

FAIR Phase 0 NuSTAR: SC R³B Dipole GLAD arrived at GSI

With the help of a 500-t crane, th transport into the experimental h

With the help of a 500-t crane, the GLAD magnet was later transport into the experimental hall (photos: A. Herlert

ionized stable calcium isotopes to Calin the 4s $S_{1/2} \rightarrow 4p P_{3/2}$ tran Measurements were performed using collinear laser spectroscopy, utiliz reference of the 4s ${}^{2}S_{1/2} \rightarrow 4p {}^{2}P_{1/2}$ transition in a Paul trap for beam-end a result, the accuracy of the isotope shifts in the 4s ${}^{2}S_{1/2} \rightarrow 4p {}^{2}P_{3/2}$ trans improved by about an order of magnitude. Comparison with the trap me King-plot-type analysis revealed that the electronic expectation value ins about 1.8(13) % larger in the 4p ${}^{2}P_{1/2}$ level than in the 4p ${}^{2}P_{3/2}$ level. This relativistic contributions to the 4p_{1/2} wave function. The results have bee Journal of Physics B. It is the first physics result that has been obtained v prototype and demonstrates its feasibility to perform high accuracy isotomeasurements. Additionally, we provided important reference data for i of stable calcium ions and helpful calibration data for collinear laser spec measurements on the neutron-rich isotopes beyond ${}^{48}Ca$, in investigatio transition currently being performed at the COLLAPS setup at ISOLDE/CE

Heavy element studies with collinear laser spectroscopy at JYFL

Recently, a new program to study heavy actinide elements using a comb resonance ionization and collinear laser spectroscopy has been initiated

GLAD in the target hall at GSI

Vacuum test successful

Transport and installation at Cave C scheduled for 2016

Commissioning und first tests 2016/17

In 2018, start of physics program with GLAD using beams from SIS18 and FRS Strahlen at 1 GeV/u

7

FAIR Phase 0 NuSTAR equipment for γ-spectroscopy

AIDA built and commissioned at RIKEN

Degas being built and commissioned hopefully at GSI

FATIMA _0 built and commissioned at RIKEN

BELEN built and commissioned at GSI, Jyvaskyla, RIKEN

DTAS built and commissioned at Jyvaskyla

LYCCA built and commissioned at GSI

The FAIR Chance: New Horizons

The FAIR Chance: New Horizons

