New Reaction Ratesof ${}^{64}\text{Ge}(p,\gamma){}^{65}\text{As}$ and ${}^{65}\text{As}(p,\gamma){}^{66}\text{Se}$ and the Impacton Nucleosynthesis in Type-I X-ray Bursts

<u>Yi Hua LAM (藍乙華)</u>

Collaborators:

Jian Jun HE (何建軍), Anuj PARIKH, Hendrik SCHATZ, B. Alex BROWN, Meng WANG (王猛), Bing GUO (郭冰), Yu Hu ZHANG (張玉虎), Xiao Hong ZHOU (周小紅), Hu San XU (徐翊珊)

> 中国科学院近代物理研究所 Institute of Modern Physics (IMP) Chinese Academy of Sciences (CAS)

2016 International Nuclear Physics Conference, 11-13 Sept. 2016, Adelaide, Australia.

New Reaction Rates of ⁶⁴Ge(p,γ)⁶⁵As and ⁶⁵As(p,γ)⁶⁶Se and the Impact on Nucleosynthesis in Type-I X-ray Bursts

Background

- Type-I x-ray burst (and models)
- Rapid-proton capture (*rp*) process
- New *rp*-process reaction rates of ${}^{64}\text{Ge}(p,\gamma){}^{65}\text{As and } {}^{65}\text{As}(p,\gamma){}^{66}\text{Se}$
- The impact on end-stage abundances and light curve
- Summary and Perspectives

Discovered independently by Belian+. (1976) and Grindlay+. (1976)

The stellar binary system is close enough to permit mass transfer.

The solar-type matter flow forms an accretion disk surrounding the neutror star and ultimately unulates on its surface, building an envelop semi-degener of conditions.

As material piles up on top of the neutron star, the envelope is heated up without any significant expansion due to degeneracy, driving a violent thermonuclear runaway.

Artistic image from David. A. Hardy / STFC

Discovered independently by Belian+. (1976) and Grindlay+. (1976)

The stellar binary system is close enough to permit mass transfer.

The solar-type matter flow forms an accretion disk surrounding the neutron star and ultimately accumulates on its surface, building up an envelope in semi-degenerate conditions.

due to degeneracy, driving a violent thermonuclear runaway.

As material piles up on top of the

neutron star, the envelope is heated

up without any significant expansion

Artistic image from David. A. Hardy / STFC

Discovered independently by Belian+. (1976) and Grindlay+. (1976)

The stellar binary system is close enough to permit mass transfer.

The solar-type matter flow forms an accretion disk surrounding the neutror star and ultimately unulates on its surface, building an envelope in semi-degenerate conditions.

Artistic image from David. A. Hardy / STFC

As material piles up on top of the neutron star, the envelope is heated up without any significant expansion due to degeneracy, driving a violent thermonuclear runaway.

Reaching A>60 and even A>100 Burst energies: 10³⁸ – 10⁴⁰ ergs; timescales: 10 – 100s; recurrence times: hours – days; max. temperatures: 1 – 2 GK; densities: ~10⁶ g/cm³.

> Drive nucleosynthesis along the proton-rich side: *rp* process [(p, γ) reactions] (**main process**) αp process [a sequence of (α ,p), (p, γ) reactions] 3α -reaction β^+ decay

Parikh+ (2008, 2009, 2013), Woosley+(2004), Schatz+ (1999) 6/0

Type I X-ray burst (XRB) rapid proton capture (70)-proces

be X-ray burst

Type I X-ray burst (XRB) rapid proton capture (70)-proces

PRL 106, 112501 (2011)

PHYSICAL REVIEW LETTERS

week ending 18 MARCH 2011

Direct Mass Measurements of Short-Lived A = 2Z - 1 Nuclides ⁶³Ge, ⁶⁵As, ⁶⁷Se, and ⁷¹Kr and Their Impact on Nucleosynthesis in the rp Process

X. L. Tu,^{1,2} H. S. Xu,^{1,*} M. Wang,¹ Y. H. Zhang,¹ Yu. A. Litvinov,^{3,4,1} Y. Sun,^{5,1} H. Schatz,⁶ X. H. Zhou,¹ Y. J. Yuan,¹ J. W. Xia,¹ G. Audi,⁷ K. Blaum,³ C. M. Du,^{1,2} P. Geng,^{1,2} Z. G. Hu,¹ W. X. Huang,¹ S. L. Jin,^{1,2} L. X. Liu,^{1,2} Y. Liu,¹ X. Ma,¹ R. S. Mao,¹ B. Mei,¹ P. Shuai,⁸ Z. Y. Sun,¹ H. Suzuki,⁹ S. W. Tang,^{1,2} J. S. Wang,¹ S. T. Wang,^{1,2} G. Q. Xiao,¹ X. Xu,^{1,2} T. Yamaguchi,¹⁰ Y. Yamaguchi,¹¹ X. L. Yan,^{1,2} J. C. Yang,¹ R. P. Ye,^{1,2} Y. D. Zang,^{1,2} H. W. Zhao,¹ T. C. Zhao,¹ X. Y. Zhang,¹ and W. L. Zhan¹

¹Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
 ²Graduate University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
 ³Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
 ⁴GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
 ⁵Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
 ⁶Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory
 and the Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
 ⁷CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay, France
 ⁸Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
 ⁹Institute of Physics, Saitama University, Saitama 338-8570, Japan
 ¹⁰Department of Physics, Saitama University, Saitama 351-0198, Japan
 (Received 8 January 2011; published 16 March 2011)

Mass excesses of short-lived A = 2Z - 1 nuclei ⁶³Ge, ⁶⁵As, ⁶⁷Se, and ⁷¹Kr have been directly measured to be $-46\,921(37)$, $-46\,937(85)$, $-46\,580(67)$, and $-46\,320(141)$ keV, respectively. The deduced proton separation energy of -90(85) keV for ⁶⁵As shows that this nucleus is only slightly proton unbound. X-ray burst model calculations with the new mass excess of ⁶⁵As suggest that the majority of the reaction flow passes through ⁶⁴Ge via proton capture, indicating that ⁶⁴Ge is not a significant *rp*-process waiting point.

DOI: 10.1103/PhysRevLett.106.112501

PACS numbers: 21.10.Dr, 26.30.Ca, 29.20.db

rapid proton capture (rp)-process

rapid proton capture (*rp*)-process

Experiment:

Obertelli+ (2011), Ruotsalainen+(2013), NNDC

Theory:
 Shell model (GXPF1a)

<mark>Sp:</mark> AME(2012), Tu+ (2011)

gamma width, $\Gamma\gamma$ Spectroscopic factor:

$$\theta_{if}^2 = \frac{1}{2J+1} \langle \varphi_f^{A-1}(J) \big| a_{nlj} \big| \varphi_i^A(J) \rangle^2$$

Nuclear physics input

Nuclear structure Large scale shell-model calculations + exp. data

Experiment:

Obertelli+ (2011), Ruotsalainen+(2013), NNDC

Theory:

Shell model (GXPF1a)

Sp: AME(2013), Tu+ (2011)

Nuclear physics input

Comparisons of present reaction rates with JINA data (REACLIB)

10^{2} 10^{0}	10^{2} 10^{0}
rpsm (Sp=-0.081MeV)	Audi & Wapstra (1995)
rath (Sp= 0.128MeV)	FDRM Rauscher & Thielemann (2000)
thra (Sp= 1.399MeV)	ETSFIQ
laur (Sp= 0.169MeV)	Van Wormer+ (1994)
ths8 (Sp= 0.255MeV)	Rauscher (Cyburt+ 2010)
present work (Sp= -0.090+/- 0.085MeV)	Exp. levels & Sp + evaluated mass + shell model
0.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
T [GK]	T [GK]

 $^{64}\text{Ge}(p,\gamma)^{65}\text{As}$

 65 As (p,γ) 66 Se

New reaction rates

Comparisons of reaction rates

New reaction rates

Comparisons of reaction rates

New reaction rates

Abundance distribution of the XRB ashes

19/0

Present ${}^{64}\text{Ge}(p,\gamma){}^{65}\text{As}$ and ${}^{65}\text{As}(p,\gamma){}^{66}\text{Se}$

One-zone XRB hydrodynamic model nucleosynthesis simulation (S01 model)

Abundances and end stage light curve

Present ${}^{64}\text{Ge}(p,\gamma){}^{65}\text{As}$ and ${}^{65}\text{As}(p,\gamma){}^{66}\text{Se}$

One-zone XRB hydrodynamic model nucleosynthesis simulation (S01 model)

20/0

Abundances and end stage light curve

Present ${}^{64}\text{Ge}(p,\gamma){}^{65}\text{As}$ and ${}^{65}\text{As}(p,\gamma){}^{66}\text{Se}$

One-zone XRB hydrodynamic model nucleosynthesis simulation (\$01 model)

21/0

End stage light curve

22/0

Changing only $S_p(^{65}As)$ and/or $S_p(^{66}Se)$:

Producing (roughly) similar light curve

Present ${}^{64}\text{Ge}(p,\gamma){}^{65}\text{As}$ and ${}^{65}\text{As}(p,\gamma){}^{66}\text{Se}$

One-zone XRB hydrodynamic model nucleosynthesis simulation (S01 model)

End stage light curve

23/0

- Changing only $S_p(^{65}As)$ and/or $S_p(^{66}Se)$:
- Producing (roughly) similar light curve

Using nominal values of $S_p(^{65}As)$, $S_p(^{66}Se)$, and $^{64}Ge(p,\gamma)$, vary $^{65}As(p,\gamma)$:

Present ${}^{64}\text{Ge}(p,\gamma){}^{65}\text{As}$ and ${}^{65}\text{As}(p,\gamma){}^{66}\text{Se}$

One-zone XRB hydrodynamic model nucleosynthesis simulation (S01 model)

Summary & Perspective

- New thermonuclear rates of ⁶⁴Ge(p,y)⁶⁵As and ⁶⁵As(p,y)⁶⁶Se reactions have been determined based on newly measured S_p(⁶⁵As), evaluated S_p(⁶⁶Se), largescale shell model calculation, and exp. levels of ⁶⁵As. These new rates differ, for instance at ≈ 1 GK, a factor of ≈ 3 – 90 from others.
- The waiting point ⁶⁴Ge is not completely ruled out using one-zone XRB model.
- We propose:
 - ▶ to measure the mass of ⁶⁶Se,
 - ▶ to obtain higher precision of mass ⁶⁵As, and
 - nuclear structure of both nuclei
 - investigation with 1D multi-zone hydrodynamic XRB model.

Summary & Perspective