Theoretical Description of β -delayed Proton Emission of Proton Rich *sd*- and *pf*- shell nuclei

Yi Hua LAM (藍乙華), Nadezda A. Smirnova

中国科学院近代物理研究所 Institute of Modern Physics (IMP) Chinese Academy of Sciences (CAS)

2016 International Nuclear Physics Conference, 11-13 Sept. 2016, Adelaide, Australia.

Theoretical Description of β -delayed Proton Emission of Proton Rich *sd*- and *pf*- shell nuclei

Yi Hua LAM (藍乙華), Nadezda A. Smirnova

- Background
 - Physics motivation
- Shell-model isospin non-conserving (INC) Hamiltonian
 - Construction of INC Hamiltonian
- β-delayed proton emission
 - > *sd*-shell: ²²Si, ²³Si, ²⁴Si, ²⁵Si,
 - > *pf*-shell:
 - ► ⁵³Ni,
 - > ⁵⁶Zn (see W. Richter's talk, on Thursday 14:10 Hall L)
 - > ⁵²Ni (see Y. H. Zhang's talk, on Thursday 14:25 Hall L)
- Summary and Perspectives

Physics motivation Discovery of radioactivity

Henri Becquerel 3 groups of radioactivity: negative, positive, and electrically neutral

F. Jouliot and I. Curie β^{+}

G.N. Flerov and K.A. Petrzhak spontaneous fission

M. Pfutzner: 2p

V. A. Karnaukhov and G. M. Ter-Akopian β-delayed proton emission

0

²²AI

$\frac{\beta \text{-delayed proton emissions}}{2^{22}Si \rightarrow 2^{22}Al \rightarrow 2^{1}Mq}$

Xin Xing XU, Chen Jian LIN, Li Jie SUN+ (Preliminary)

YHL & N. A. Smirnova calculated for Xin Xing XU+ (in preparation)

Physics motivation Determining structure of proton-rich nuclei

Obtaining the pivotal level of ³¹S which determining ³⁰P(p,γ)³¹S reaction rates that influences nova nucleosynthesis Bennett+ (PRL 116, 102502)

Only uses **one set of Hamiltonian** to describe all physical phenomena of a given partial decay scheme.

The β -delayed proton emission of proton-rich sd- and pf-shell nuclei

10/0

Isospin Conserving Nucl. Hamiltonian

$$\hat{H}\psi_{TT_{Z}} \equiv (\hat{H}_{0} + \hat{V})\psi_{TT_{Z}} = E_{T}\psi_{TT_{Z}}, \quad \psi_{TT_{Z}} = \sum_{L} a_{T_{k}}\phi_{TT_{Z}}$$

Nucl. wave function, ψ_{TT_z}

Solve eigenvalue prob.

YHL & N. A. Smirnova & E. Caurier (PRC 87, 054304) The β-delayed proton emission of proton-rich sd- and pf-shell nuclei

c. Argonne V18

YHL & N. A. Smirnova & E. Caurier (PRC 87, 054304) The β-delayed proton emission of proton-rich sd- and pf-shell nuclei

YHL & N. A. Smirnova & E. Caurier (PRC 87, 054304)

15/0

TME

YHL & N. A. Smirnova & E. Caurier (PRC 87, 054304) The β-delayed proton emission of proton-rich sd- and pf-shell nuclei

16/0

Isospin symmetry & Isospin admixed states

Isospin symmetry states,

$$\left|\psi_{m}^{A}(JT=3/2)\right\rangle = \sum_{i}\alpha_{i}\left|\phi_{n,l,j,T=3/2}\right\rangle_{i}$$

Isospin admixed states,

$$\left|\psi_{m}^{A}(JT=3/2)\right\rangle = \sum_{i}\alpha_{i}\left|\phi_{n,l,j,T=3/2}\right\rangle_{i} + \sum_{j}\beta_{j}\left|\phi_{n,l,j,T=1/2}\right\rangle_{j} + \sum_{k}\chi_{k}\left|\phi_{n,l,j,T=5/2}\right\rangle_{k} + \dots$$

Isobaric analogue state of ⁵³Co with isospin symmetry,

$$|7/2^{-}, IAS_{T=3/2}\rangle = \sum_{i} \alpha_{i} |7/2^{-}, T=3/2\rangle_{i}$$

Isobaric analogue state of ⁵³Co with admixed isospin,

$$|7/2^{-}, IAS_{T=3/2}\rangle = \sum_{i} \alpha_{i} |7/2^{-}, T=3/2\rangle_{i} + \sum_{j} \beta_{j} |7/2^{-}, T=1/2\rangle_{j} + \sum_{k} \chi_{k} |7/2^{-}, T=5/2\rangle_{k} + \dots$$

The β -delayed proton emission of proton-rich sd- and pf-shell nuclei

17/0

Isospin non-conserving Hamiltonian

sd-shell nuclei

cd - USDB = USDB + V_{Coul} (UCOM) + V_0 (USDB, T = 1) + isovector SPE

pf-shell nuclei (unoptimized INC)

 $cd - KB3G = KB3G + V_{Coul} + isovector SPE$ $cd - GXPF1a = GXPF1a + V_{Coul} + isovector SPE$

YHL & N. A. Smirnova & E. Caurier (PRC 87, 054304); Ormand & Brown (NPA 491, 1) The β-delayed proton emission of proton-rich sd- and pf-shell nuclei

β -delayed proton emissions

	13	_				$5/2^{+}(T=3/$	2)					
Energy [MeV]	19	cdUSDB	(PRC	C 87,	054304	$/^{25}$ Si						
				491	1)	$\int (A, Z)$	Half live	es, branchir	ng ratios [%] and lo	og <i>ft</i> of 25 Si -	$\rightarrow^{25}Al$
	11	CDUJD		、 , , ,	1)	/	Thomas e	t al. (2004)	cdUS	SDB	OBU	SD
	~				Superallo	owed β^+	$T_{1/2}$	[ms]	$T_{1/2}$	[ms]	$T_{1/2}$ [ms]
1	10	, E					220(3)		241.0		246.1	
	10					/	BR(%)	log ft	BR(%)	log ft	BR(%)	log ft
	9	Branching ratios [9	$\%$] of 25 Al	$l \rightarrow^{24} Mg$		$(3/2 \text{ to } 7/2)^+$	0.21 (4)	4.32 (10)			0.18	4.28
	8		Presen	nt Work		$\int (3/2 \text{ to } 7/2)^+$	1.2(2)	4.12(9)			0.63	4.41
		Thomas et al. (2004)	cdUSDB	OBUSD		$5/2^+(T=3/2)$ IAS	12.8 (8)	3.25(3)	16.60	3.30	13.52	3.29
			0.00	0.00	3 ⁺	$(3/2 \text{ to } 7/2)^+$	0.34(6)	4.94(9) 4.65(13)			0.16	5.29 5.61
Energy [MeV]	-					$(3/2 \text{ to } 7/2)^+$	3.7(2)	4.17 (3)			1.32	4.63
	_	3.20 (15)	17.40	53.99	o ⁺	$(3/2 \text{ to } 7/2)^+$	0.5(1)	5.13(11)	0.40	5.04	0.50	5.04
2		3 74 (7)	0.02	0.38	2, === /	$5/2^{+}$	0.10(7)	5.73 (34) 5.60 (10)	0.42	5.34	0.56	5.24
Energy [MeV]	6	5.14(1)	0.05	0.30	* //	3/2 $3/2^+$	1.52(0) 1.7(2)	5.00 (10) 5.00 (6)	0.03	6.50 5.51	0.16	5.83
						$\frac{3/2}{(3/2 \text{ to } 7/2)^+}$	0.6(1)	5.56(11)	0.21	5.93	0.66	5.48
E	5	-				$3/2^+$	0.6(2)	5.76(18)	0.78	5.38	0.27	6.02
					Π^{*}		3.2 (3)	5.11 (4)	2.79	5.15	3.03	5.05
					- 11	3/2+	2.9(3)	5.26(5)	1.54	5.52	1.78	5.40
Energy [MeV	4						0.4(1)	6.21(18)	0.05	7.14	0.16	6.61
		74.40(54)	66.29	38.59	2	- /						
	3	-			1							
		18.60 (54)	25 70	7.04	$0^{+}(T=0)$	$3/2^+$	4.8(3)	5.43(3)	8.40	5.17	7.64	5.16
		10.00 (04)	20.19	1.04	0 (1=0)							
	2				^{24}Mg		15 (9)	5 17 (19)	19 56	F 99	14.99	E 1 E
					(A-1, Z-2))/2	10 (0)	5.17 (12)	13.30	0.22	14.30	5.15
	1					/ 3/2 ⁺	26(4)	5.05(8)	20.17	5.16	20.5	5.10
						$1/2^+$						
						$5/2^+(T=1/2)$	25(7)	5.25(17)	22.34	5.34	21.40	5.31
	۲					25 A1			A8.01	0.01	21.10	0.01
						$(\mathbf{A} \mathbf{\overline{Z}}_{-1})$						
	-1	<u> </u>				(Λ, Σ^{-1})						

YHL & N. A. Smirnova (in preparation)

B-delayed proton emissions

B-delayed proton emissions

YHL & N. A. Smirnova (preliminary)

21/0

B-delayed proton emi

TBME $\langle ij|V|kl\rangle_{IT}^{pp}$ $\langle (1s_{1/2})^2 | V | (1s_{1/2})^2 \rangle_{01}^{pp}$ $\langle 1s_{1/2}0d_{5/2}|V|1s_{1/2}0d_{5/2}\rangle_{31}^{pp}$ -10% $\langle 1s_{1/2}0d_{5/2}|V|1s_{1/2}0d_{5/2}\rangle_{21}^{pp}$ -15% $\langle (0d_{5/2})^2 | V | (1s_{1/2})^2 \rangle_{01}^{\mu\nu}$ -18% $\left\langle 1s_{1/2}0d_{5/2} | V | (0d_{5/2})^2 \right\rangle^{pp}$ TBME $\langle ij|V|kl\rangle_{IT}^{pn}$ $\langle 1s_{1/2}0d_{5/2}|V|1s_{1/2}0d_{5/2}\rangle_{21}^{pn}$ $\langle 1s_{1/2}0d_{5/2}|V|1s_{1/2}0d_{5/2}\rangle_{21}^{pn}$ $\left\langle 1s_{1/2}0d_{5/2} \middle| V \middle| (0d_{5/2})^2 \right\rangle^p$ $\langle 1s_{1/2}0d_{5/2}|V|1s_{1/2}0d_{5/2}\rangle_{30}^{pn}$ $\langle 1s_{1/2}0d_{5/2}|V|1s_{1/2}0d_{5/2}\rangle_{20}^{pn}$ $\left\langle 1s_{1/2}0d_{5/2} \middle| V \middle| (0d_{5/2})^2 \right\rangle_{p}^{p}$

USDB:USD

+20%

 $0^{+}(T=2)$

24 (A,	Si Z)											
	Branching ratios [%] and log ft of 24 Si \rightarrow^{24} Al											
	Ichikawa et al	cdUSDB			OBUSD							
	$T_{1/2}[$ 140:	ms] ± 8	$\begin{array}{c} T_{1/2} [\mathrm{ms}] \\ 171 \end{array}$			${T_{1/2}}[{\rm ms}]\\{161}$						
	$\operatorname{Br}[\%]$	log ft	$\operatorname{Br}[\%]$	log ft	E	3r[%]	log ft					
) IAS	$\begin{array}{c} 0.07\ (2)\\ 0.26\ (4)\\ 2.2\ (2)\\ 9.9\ (9)\\ 1.0\ (3) \end{array}$	$\begin{array}{c} 4.90\ (10)\\ 4.47\ (7)\\ 3.68\ (4)\\ 3.18\ (4)\\ 4.25\ (12)\end{array}$	$0.1 \\ 1.9 \\ 0.5 \\ 14.3 \\ 1.4$	$\begin{array}{c} 4.79 \\ 3.55 \\ 4.23 \\ 3.20 \\ 4.01 \end{array}$		$0.3 \\ 0.1 \\ 4.4 \\ 11.7 \\ 0.2$	$4.22 \\ 5.22 \\ 3.51 \\ 3.21 \\ 4.93$					
	0.68 (10)	4.62 (6)	0.0	7.84		1.0	4.46					
	0.8(1) 1.1(1) 0.49(7)	4.72 (6) 4.70 (5) 5.17 (6)	$2.0 \\ 0.6 \\ 2.2$	$4.35 \\ 5.05 \\ 4.63$		$1.7 \\ 1.1 \\ 1.4$	$4.41 \\ 4.68 \\ 4.73$					
	11 (1) 5.8 (7)	4.16(5) 4.56(5)	6.0 15.2	4.45 4.13		9.8 12.7	4.20 4.21					

23.9 (15)	4.45 (3)	19.4	4.58	26.5	4.46
41.0 (44)	4.37(4)	36.1	4.51	29.1	4.57

β -delayed proton emissions

YHL & N. A. Smirnova (preliminary)

β-delayed proton emissions

J. Su+ PLB 756, 323

$\beta - \frac{\text{delayed}}{5^{3}N_{i} \rightarrow 5^{3}C_{0} \rightarrow 5^{2}F_{e}} \text{ proton emissions}$

YHL & N. A. Smirnova calculated for J. Su+ (PLB 756, 323)

Summary & Perspective

- Most of the partial decay scheme of sd-shell precursors can be described with the newly constructed isospin non-conserving Hamiltonian.
- Without nuclear-origin isospin symmetry breaking force, we can still describe some partial decay scheme of *pf*-shell precursors. Will inclusion of nuclear-origin isospin symmetry breaking force improve the calculation?
- USD/USDB is widely used in the study of neutron-rich nuclei. Thomas-Ehrman shift may cause the change of configuration in wave functions, but is not considered in USD/USDB, (and maybe also GXPF1).
- Evolution of the SPE of 1s1/2, and of TBME involving 1s1/2, and 1s1/2-0d5/2 orbits are not considered for the proton-rich side.

Acknowledgments.

COLLABORATORS:

CENBG: Betram Blank; MSU : B. Alex Brown; CIAE: Jun SU, WeiPing LIU, Xin Xing XU, Cheng Jian LIN, Li Jie SUN, et al. IMP: Xing XU, Peng ZHANG, Peng SHUAI, Yu Hu ZHANG, Meng WANG, et al.

YHL gratefully acknowledges the financial supports from:

- Ministry of Science and Technology of China (Talented Young Scientist Program)
- □ the China Postdoctoral Science Foundation (2014M562481)
- National Natural Science Foundation of China (U1432125, U1232208)
- □ the Embassy of the Republic of France in the People's Republic of China (PHC Xu Guangqi (徐光啟) 2015, project no. 34457VA)

Thank you...

Acknowledgments