First Experiments with The STRIT-TPC

Constraining EOS on symmetry energy using heavy ion collisions

Mizuki KURATA-NISHIMURA RIKEN, Japan For SπRIT-TPC collaboration

Contents

* Constrain EOS on symmetry energy at $\rho_0 < \rho < 2 \rho_0$ $Observables \pi - /\pi + ratio, proton/neutron flow$ * At SAMURAI RIBF-RIKEN using 132,108 Sn + 124,112 Sn \diamond Properties of S π RIT-TPC Auxiliary detectors Fist Experimental results Summary and Perspectives

EOS of Nuclear Matter

 Key subject not only for nuclear physics but also astronomy and QCD.

- Heavy neutron stars > 2 × M(sun)
 - PSR J1614-2230 (2010)
 - PSR J0348+0432 (2013)
- Supernove explosion?

http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar/NStar_I.gif

Constraining EOS on symmetry energy using RI beam experiment

S(ρ): Isospin asymmetry dependence at $\rho_0 < \rho < 2 \rho_0$

 $E_{A}(\rho,\delta) = E_{A}(\rho,0) + \delta^{2}S(\rho)$:Symmetry energy term Isospin asymmetry par: $\delta = (\rho_{n} - \rho_{p})/(\rho_{n} + \rho_{p}) = (N - Z)/A$

Isospin asymmetry dependence of symmetry energy at RIBF-RIKEN using RI beam

Primary	Beam	Target	δ_{sys}	Goal
¹²⁴ Xe	¹⁰⁸ Sn	¹¹² Sn	0.09	minimum δ
	¹¹² Sn	¹²⁴ Sn	0.15	Reference
²³⁸ U	¹³² Sn	¹²⁴ Sn	0.22	maximum δ
	¹²⁴ Sn	¹¹² Sn	0.15	Reference

Feature : Systematic measurements at supra saturation density

 π^{-}/π^{+} Production Ratio

FIG. 6. (Color online) Evolution of the π^-/π^+ ratio in the reaction of 132 Sn + 124 Sn at a beam energy of 400 MeV/nucleon and an impact parameter of 1 fm.

- In dense and isospin asymmetry medium, neutron is repulsive while Proton is attractive.
- π^-/π^+ ratio sensitive to the high-density behavior of symmetry energy.

Proton and neutron flow

12

0.8

200

400

600

Based on IBUU model

Stiff

800

1000

 132 Sn+ 124 Sn/ 108 Sn+ 112 Sn 300MeV/A b=3fm

200

Pt (MeV/c)

400

600

Soft

800

$$\frac{dN}{d\phi} \sim [1 + 2\nu_1 \cos(\phi) + 2\nu_2 \cos(2\phi) + \dots]$$

- BUU model predicts proton and neutron flow is sensitive to EOS •
- Observe azimuthal asymmetry emission with respect to a reaction plane
 - v_1 : Directed flow
 - v_2 : Elliptic flow

Differential flow

 $K_{sym} \equiv 9\rho_0^2$

FIG. 2. The average transverse momentum per nucleon in the reaction plane for neutrons and protons as a function of reduced rapidity with the K_{sym} parameter of +61 MeV (upper window) and -69 MeV (lower window), respectively.

First experiment at SAMURAI in RIBF-RIKEN

TPC: Time Projection Chamber "Snap shot"

RI beam

Target

- Time projection chamber is ideally suited for identifying particles in magnetic field
- Products from reaction ionize gas inside a detection volume, called the field cage
- In field cage, electric field and magnetic
 field are applied perpendicular to beam direction.
- 2-D path traced out on pad plane
- The time at which the electrons hit the pads provides vertical dimension

Path in horizontal plane from pad positions

B field 0.5T E field

Position in **vertical drift** direction from **time**

SpiRIT-TPC

 SπRIT-TPC is designed and constructed at NSCL/MSU to be used in SAMURAI magnet chamber.

SπRIT TPC Parameters								
Pad Plane Area	1.3 m x 0.9 m	Gas Gain	2000					
Number of Pads	12096 (112x108)	E-field	135 V/cm					
Pad size	12 mm x 8 mm	Drift velocity	5.5 cm/µs					
Drift Distance	50 cm	dE/dx range	Z=1-8, π, p, d, t, He, Li-					
Pressure	1 atmosphere	Two-track res.	2.5 cm					
Gas composition	90% Ar + 10% CH ₄	Multiplicity limit	200					

RIKE

SπRIT-TPC Read-out Electronics

Performance of Gating Grid

•

- Gating grid wires block
 - unwanted events
 - Ions from avalanche

- Electron transparency as a function of the different voltage between adjacent wires (ΔV) agreed with Garfield simulations.
 - This result has been submitted to NIMA!

Photogrammetry Measurement

- 1. Put reflecting point stickers on the measuring surface
- 2. Take pictures from a several angles.
- 3. Analyze picture data.
- 4. The absolute position of point is reconstructed.
- 5. Absolute position determined with ~0.2mm.
- 6. This results will be submitted soon!

TPC measurement timeline

Sn Beam ID

Primary	Beam	Target	E/A	δ_{sys}	Goal	Date
¹²⁴ Xe	¹⁰⁸ Sn	¹¹² Sn	269	0.09	minimum δ	4/30-5/4
	¹¹² Sn	¹²⁴ Sn	270	0.15	Reference	5/4-5/6
²³⁸ U	¹³² Sn	¹²⁴ Sn	269	0.22	maximum δ	5/25-5/29
	¹²⁴ Sn	¹¹² Sn	270	0.15	Reference	5/30-6/1

NISHINA

2D & 3D Event Display

¹³²Sn+¹²⁴Sn E/A=300 MeV (May 2016) Central reactions Pion Spiral Gas event

Track Reconstruction

- 1. Pulse Shape Analysis
- 2. Helix tracking: 3D momentum
 - 1. Track separation
 - 2. Riemann fit: 2D
 - 3. Helix fit: 3D
 - 4. Clustering
 - 5. Initialize GENFIT parameters
- 3. GENFIT: precise fitting (Parameterization, extrapolation)
- 4. RAVE(Reconstruction vertices)

Vertex Reconstruction

Correlation between Extrapolated track from TPC and Beam at the target.

Two drift chambers provide us beam position at the target

Each track extrapolated onto the target

Nice correlation verifies vertex reconstruction algorithm.

Correlation with auxiliary detectors

Nice correlations show confirmation of successful event triggering systems

Preliminary PID

- Gains are not calibrated.
- π^-/π^+ can be identified.
- Better resolution is obtained in latest studies.

Summary

- The first $S\pi RIT$ -TPC experiments performed at SAMURAI RIKEN-RIBF successfully in Spring 2016.
- Track reconstruction software is under development.
- Correlations with auxiliary detectors show confirmation of successful event triggering systems.
- Good progress to obtain π^-/π^+ spectral ratios to eventual place constraints on the symmetry energy at high density.
- Perspectives
 - Several technical papers on TPC are being prepared.
 - New physics results are coming!

Thank you for your attention

Other Participants: H. Baba, Chica, Ichihara, Kondo, T. Nakamura, H. Otsu, Saito, Togano NeuLAND Collaboration: Leyla Atar, Tom Aumann, Igor Gasparic, A. Horvat, H. Scheit

J. Barney (MSU) G. Cerizza (MSU) J. Estee (MSU) B. Hong (Korea U) T. Isobe (RIKEN)* G. Jhang (Korea U) M. Kaneko (Kyoto U) M. Kurata-Nishimura (RIKEN) P. Lasko (IFN, Krakow) H. Lee (RISP) J. Lee (Korea U) J. Lukasik (IFN, Krakow) W. Lynch (MSU)* A. McIntosh (TAMU) P. Morfouace (MSU) T. Murakami (Kyoto U)* S. Nishimura (RIKEN) P. Pawlowski (IFN, Krakow) C. Santamaria (MSU) R. Shane (MSU) D. Suzuki (RIKEN) B. Tsang (MSU)* Y. Zhang (Tsinghua U) *spokespersons

