

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Exploring the onset of the N=60 shape coexistence in Sr

Reiner Kruecken TRIUMF UBC

September 12th, 2016

Shape transition at N=60

RIUMF

- The strong 0_3^+ (1465 keV) $\rightarrow 0_2^+$ (1229 keV) E0 transition is characteristic of coexisting shapes.
- The deformed 0₃⁺ state at 1465 keV is expected to be the same structure as the ⁹⁸Sr ground state.

Shape coexistence in atomic nuclei [Rev. Mod. Phys. 83, 1467 (2011)]

- Aim: investigate the evolution of single-particle levels through the onset of deformation and the shape transition
 - → single-particle transfer reactions are an ideal tool
- ⁹⁵Sr (N=57) near the transition point from spherical to deformed
- ⁹⁶Sr shows clear signs of shape coexistence
- ⁹⁴Sr(d,p)⁹⁵Sr
 - → establish spins for excited states in 95 Sr (N=57)
 - → determine dominant single-particle occupancies
- ⁹⁵Sr(d,p)⁹⁶Sr
 - → probe $(s_{1/2})^2$ content of coexisting 0⁺ and 2⁺ states
- ⁹⁶Sr(d,p)⁹⁷Sr
 - → establish spins for excited states in ⁹⁷Sr (N=59)
 - ➔ determine dominant single-particle occupancies

ISAC rare isotope facility at TRIUMF

TRIUMF

Beam identification with Bragg Detector

TIGRESS + SHARC + TRIFOIL

SHARC-TIGRESS

TIGRESS + SHARC

SHARC

Particle kinematics for ⁹⁵Sr(d,p)⁹⁶Sr

Particle identification used through dE-E detector arrangement in SHARC

Poor energy resolution makes extracting ⁹⁶Sr states difficult.

RIUMF

1229 keV 0⁺ State

- Gamma-gate on 414 keV transition selects 1229 keV state.
- Clear ℓ =0 character in angular distribution.
- Spectroscopic factor determined to be 0.49(2), larger than ground state.

Population of 0⁺ states

- ^{94,95,96}Sr are first high-mass (A>30) accelerated beams at TRIUMF.
- Population strength of low energy 0⁺ states in ⁹⁶Sr has been measured.
 - O_1^+ and O_2^+ strongly populated, while O_3^+ is barely populated.
 - 0_1^+ and 0_2^+ are (near) spherical in nature
 - 0₃⁺ is strongly deformed
- Angular distributions determined for states up to 3.5MeV
- ⁹⁴Sr(d,p) and ⁹⁶Sr(d,p) analysis in progress

S. Cruz, P. C. Bender, R. Krücken, K. Wimmer, F. Ames, C. Andreoiu, C. S. Bancroft,
T. Drake, R. Braid, T. Bruhn, W. Catford, D. S. Cross, A. Garnsworthy, G. Hackman,
A. Knapton, K. Kuhn, J. Lassen, R. Laxdal, M. Marchetto, A. Matta, D. Miller,
M. Moukaddam, N. Orr, A. Sanetullaev, C. Unsworth, P. J. Voss

University of British Columbia, TRIUMF, Central Michigan University, Simon Fraser University, University of Toronto, Colorado School of Mines, University of Surrey, LPC Caen

Supported by The National Research Council (Canada), the National Science Foundation (USA), the Science and Technology Facilities Council (UK) and the Natural Sciences and the Engineering Research Council (Canada)

Canada's national laboratory for particle and nuclear physics and accelerator-based science

> Thank you! Merci!

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | McGill | Manitoba | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Follow us at TRIUMFLab

