Precision Measurements of Neutron Beta Decay with NoMoS at PERC

Gertrud Konrad

Stefan-Meyer-Institut Wien, ÖAW, Austria Atominstitut, TU Wien, Austria

International Nuclear Physics Conference

Adelaide, Australia September 11 – 16, 2016

'There are many examples in physics showing that *higher precision* revealed new phenomena, inspired new ideas, or *confirmed or dethroned well-established theories.*'

> Wolfgang Paul Electromagnetic Traps for Charged and Neutral Particles Nobel Lecture, December 8, 1989

PRECISION MEASUREMENTS

Experimental approach to `physics beyond'

Outline

- Precision measurements
- Neutron β-decay (theory)
 - within SM
 - beyond SM
- Neutron β-decay (experiment)
 - Overview
 - PERC
 - NoMoS
 - ANNI
- Summary and Outlook

NEUTRON β-DECAY (THEORY)

Neutron β-decay

 $n \rightarrow p + e^- + \overline{\nu}_e + 782.334 \text{keV}$:

• prototype of weak interactions

Neutron β-decay

 $n \rightarrow p + e^- + \overline{\nu_e} + 782.334 \text{keV}$:

• prototype of weak interactions

• described by *V*-*A* theory:
$$H_{V-A} = \frac{G_F V_{ud}}{\sqrt{2}} \langle p | \gamma_\mu \left(1 + \frac{g_A}{g_V} \gamma^5 \right) | n \rangle \langle e^- | \gamma_\mu \left(1 - \gamma_5 \right) | v_e \rangle + h.c.$$

The neutron alphabet

The neutron alphabet within SM

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} = \frac{1}{2(2\pi)^{5}} \underbrace{G_{F}^{2} |V_{ud}|^{2} (1+3|\lambda|^{2})}_{K} p_{e}E_{e} (E_{0} - E_{e})^{2} \qquad \text{J.D. Jackson et al., PR106, 517 (1957)} \\ \times \left[1 + a \frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e}E_{v}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \vec{\sigma}_{n} \rangle}{\vec{\sigma}_{n}} \cdot \left(A \frac{\vec{p}_{e}}{E_{e}} + B \frac{\vec{p}_{v}}{E_{v}} + D \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e}E_{v}}\right)\right]$$

• 2 unknown parameters

$$V_{\rm ud}$$
, $\lambda = g_{\rm A}/g_{\rm V}$

• 20 or more observables

$$\tau_{n}, a, b, A, B, C, D, \dots$$

$$a = \frac{1 - |\lambda|^{2}}{1 + 3|\lambda|^{2}}, \quad A = -2 \frac{|\lambda|^{2} + \operatorname{Re}(\lambda)}{1 + 3|\lambda|^{2}}$$

$$A(T_{e}) = A \cdot \left(1 + c + \underbrace{a_{WM}(T_{e}, \lambda, f_{2})}_{\approx 2\%}\right)$$

• yet unmeasured

$$\overrightarrow{P_{p}}^{\dagger} \xrightarrow{\mathbf{D}_{d}} \overrightarrow{\mathbf{D}_{n}} \xrightarrow{\mathbf{D}_{d}} \overrightarrow{\mathbf{D}_{n}} \xrightarrow{\mathbf{D}_{d}} \overrightarrow{\mathbf{D}_{e}} \xrightarrow{\mathbf{P}_{e}} \overrightarrow{\mathbf{P}_{v}}$$

The neutron alphabet beyond SM

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} = \frac{1}{2(2\pi)^{5}} \underbrace{G_{F}^{2} |V_{ud}|^{2} (1+3|\lambda|^{2})}_{(1+3|\lambda|^{2})} p_{e}E_{e} (E_{0} - E_{e})^{2} \qquad \text{J.D. Jackson et al., PR106, 517 (1957)} \\ \times \left[1 + a \frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e}E_{v}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \vec{\sigma}_{n} \rangle}{\vec{\sigma}_{n}} \cdot \left(A \frac{\vec{p}_{e}}{E_{e}} + B \frac{\vec{p}_{v}}{E_{v}} + D \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e}E_{v}}\right)\right]$$

• 9 unknown parameters:

 $V_{\rm ud}, L_j, R_j, j = V, A, S, T$

• 20 or more observables:

 $\tau_{\rm n}$, a, b, A, B, C, D, ...

 $\xi a = |L_{V}|^{2} - |L_{A}|^{2} - |L_{S}|^{2} + |L_{T}|^{2} + |R_{V}|^{2} - |R_{A}|^{2} - |R_{S}|^{2} + |R_{T}|^{2}$ $\xi b = 2\Re \left(L_{S}L_{V}^{*} + 3L_{A}L_{T}^{*} + R_{S}R_{V}^{*} + 3R_{A}R_{T}^{*} \right) \text{ yet unmeasured}$ $\xi A = -2\Re \left(|L_{A}|^{2} + L_{V}L_{A}^{*} - |L_{T}|^{2} - L_{S}L_{T}^{*} - |R_{A}|^{2} - R_{V}R_{A}^{*} + |R_{T}|^{2} + R_{S}R_{T}^{*} \right)$ $\xi = |L_{V}|^{2} + 3|L_{A}|^{2} + |L_{S}|^{2} + 3|L_{T}|^{2} + |R_{V}|^{2} + 3|R_{A}|^{2} + |R_{S}|^{2} + 3|R_{T}|^{2}$

Current status of neutron alphabet

Observable	Standard Model	Status PDG 2015
Lifetime	$\tau_{n} = \frac{1}{ V_{ud} ^{2}} \frac{(4908.7 \pm 1.9)s}{(1+3 \lambda ^{2})}$	$\Delta \tau_n / \tau_n = 1 \times 10^{-3}$
Ratio of weak coupling constants	$\lambda = g_{\rm A} / g_{\rm V} = \lambda e^{i\phi}$	$\Delta \lambda / \lambda = 2 \times 10^{-3}$
Electron-neutrino correlation	$\boldsymbol{a} = \frac{1 - \boldsymbol{\lambda} ^2}{1 + 3 \boldsymbol{\lambda} ^2}$	$\Delta a/a = 3.9 \times 10^{-2}$
Fierz interference term	b = 0	yet unmeasured
Beta asymmetry	$\mathbf{A} = -2 \frac{\left \boldsymbol{\lambda}\right ^2 + \left \boldsymbol{\lambda}\right \cos \boldsymbol{\phi}}{1 + 3 \left \boldsymbol{\lambda}\right ^2}$	$\Delta A/A = 8 \times 10^{-3}$
Neutrino asymmetry	$\boldsymbol{B} = 2 \frac{ \boldsymbol{\lambda} ^2 - \boldsymbol{\lambda} \cos \phi}{1 + 3 \boldsymbol{\lambda} ^2}$	$\Delta B/B = 3 \times 10^{-3}$
Proton asymmetry	$\boldsymbol{C} = -0.27484 \left(\boldsymbol{A} + \boldsymbol{B}\right)$	$\Delta C/C = 1.1 \times 10^{-2}$
Triple correlation	$D = 2 \frac{ \lambda \sin \phi}{1+3 \lambda ^2} \equiv 0 \qquad \phi = 180^{\circ}$	$D = (-1 \pm 2) \times 10^{-4}$ $\phi = (180.02 \pm 0.03)^{\circ}$

Prospects for *S* **and** *T* **interactions in LHC era**

 $> 10^{-3}$ level b measurements complementary to improved LHC results

T. Bhattacharya et al., LA-UR-16-20522, arXiv:1606.07049 (2016) see also: O. Naviliat-Cuncic & M. González-Alonso, Ann. Phys. (Berlin) 525 (2013) 600

Why investigate neutron β-decay?

- Provide value of λ for other fields of research
 - Big Bang nucleosynthesis, energy generation in Sun, neutron star formation
 - detection efficiency of neutrino and LHC detectors
 - key benchmark for LQCD calculation of hadron structure (exascale computing)
- Study structure of weak interaction
 - value of weak magnetism form-factor f₂ predicted (CVC hypothesis)
 - but large theoretical uncertainties
- Test the Standard Model of particle physics
 - self-consistency of the Standard Model
 - unitarity of Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix
- Search for `physics beyond' and new symmetry concepts
 - right-handed admixtures, exotic scalar and tensor admixtures
 - left-right symmetry, supersymmetry (SUSY), leptoquarks, etc.
 - SUSY deviations from CKM unitarity $\geq 10^{-4}$ fall in LHC inaccessible region
 - 10⁻³ level **b** measurements complementary to improved LHC results

Why investigate neutron β-decay?

- Provide value of λ for other fields of research
 - Big Bang nucleosynthesis, energy generation in Sun, neutron star formation
 - detection efficiency of neutrino and LHC detectors
 - key benchmark for LQCD calculation of hadron structure (exascale computing)
- Study structure of weak interaction
 - value of weak magnetism form-factor f₂ predicted (CVC hypothesis)
 - but large theoretical uncertainties
- Test the Standard Model of particle physics
 - self-consistency of the Standard Model
 - unitarity of Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix
- Search for `physics beyond' and new symmetry concepts
 - right-handed admixtures, exotic scalar and tensor admixtures
 - left-right symmetry, supersymmetry (SUSY), leptoquarks, etc.
 - SUSY deviations from CKM unitarity $\geq 10^{-4}$ fall in LHC inaccessible region
 - 10^{-3} level *b* measurements complementary to improved LHC results

NEUTRON β-DECAY (EXPERIMENT)

`Current' experiments worldwide

Experiments to measure Fierz term *b*

Experiments to measure Fierz term *b*

Proton and Electron Radiation Channel

New facility PERC

D. Dubbers et al., NIM A 596, 238 (2008)G. K. et al., J. Phys.: Conf. Ser. 340, 012048 (2012)

September 13, 2016

NoMoS@PERC, INPC2016, Adelaide

New facility PERC

September 13, 2016

NoMoS@PERC, INPC2016, Adelaide

G. Konrad, SMI & TU Wien

New facility PERC

D. Dubbers et al., NIM A 596, 238 (2008) G. K. et al., J. Phys.: Conf. Ser. 340, 012048 (2012)

September 13, 2016

≤ 10⁻⁴

 $a, b, A, B, C, f_2, \dots$

Systematics

Versatility

Status

C. Klauser et al, JPCS340, 012011 (2012)

manufacturing within 11, commissioning within 17 months

Status of PERC (excerpt)

Ti wire getter pump

Magnetic spin resonator

C. Gösselsberger, PhD, TU Wien, 2013

Active electron dump

Ion getter pump

Rail system for neutron guide

NoMoS@PERC, INPC2016, Adelaide

Beam site MEPHISTO @ FRM II / Garching (DEU)

- `empty' new hall
- neutron guide: L = 40 m, R = 3 km, m = 2.5, $\Box = 6 \times 10.6 \text{ cm}^2$
- expected flux: 2×10¹⁰ n /cm²/s (equal to PF1B at ILL)
- expected mean wavelength: 4.5 Å
- only very few neighbours \rightarrow low background
- easy ground level access, fixed installation

PERC Collaboration

H. Abele¹, M. Beck², J. Bosina^{1,3,4}, D. Dubbers⁵,
J. Erhart¹, H. Fillunger^{1,3}, C. Gösselsberger¹,
S. Haas¹, P. Haiden¹, W. Heil², A. Hollering⁶,
M. Horvath¹, E. Jericha¹, C. Klauser^{1,4}, J. Klenke⁶,
M. Klopf¹, G. K.^{1,3}, T. Lauer⁶, K. Lehmann⁶,
H. Lopez⁵, W. Mach¹, B. Märkisch⁷ (Spokesperson),
R.K. Maix^{1,7}, H. Mest⁶, A. Pethukov⁴, L. Raffelt³,
N. Rebrova³, C. Roick³, H. Saul^{1,4,6}, U. Schmidt⁵,
T. Soldner⁴, C. Theroine⁷, R. Virot⁴, X. Wang¹,
B. Windelband⁵, C. Ziener⁵, O. Zimmer⁴, J. Zmeskal³

Scientific objectives of PERC

Observable	Physics case		
Beta asymmetry A , electron-neutrino-correlation a	 Input for cosmology, astrophysics, neutrino physics Tests of the SM (unitarity of quark mixing, conservation of weak vector currents) Search for right-handed currents, <i>S</i>, <i>T</i> admixtures 		
P_{p}	Search for right-handed currents, <i>S</i> , <i>T</i> admixtures		
Longitudinal electron polarization	 Search for T reversal and CP violation Search for S, T admixtures 		
Energy spectra of electrons (b, f_2) and protons, energy dependence of correlation coefficients	 Search for <i>S</i>, <i>T</i> admixtures Weak magnetism in electroweak interaction Radiative corrections Search for Lorentz invariance violation 		

User experiments @ PERC

Observable	e Energy	p Energy	e/p Momenta f_{0}^{0}	p Velocity	p TOF
Measurement principle	e Detector	MAC-E Filter	Magnetic spectrometer	Wien filter	Electrostatic chopper
Detector	Scintillator, silicon detector	Silicon detector	Spatial-resolving detector	Spatial-resolving detector	Silicon detector
Example	PERKEO I – III, UCNA	aSPECT, PERKEO III			

Prospects for Fierz term *b* **@ PERC**

$$d\Gamma_b = \left(1 + \frac{b}{E_e}\right) d\Gamma_{\rm SM}$$

 limited energy resolution of scintillation detectors

Electron momentum spectrum

Magnetic spectrometer @ PERC

Radius of gyration:

$$r(p,\theta) = \frac{p_{\perp}}{|q|B_3} = \frac{p}{|q|B_3} \cos\theta$$

- + large drift distances O(dm)
- no low momentum measurements

Magnetic spectrometer @ PERC

Radius of gyration:

$$r(p,\theta) = \frac{p_{\perp}}{|q|B_3} = \frac{p}{|q|B_3} \cos\theta$$

- + large drift distances O(dm)
- no low momentum measurements
- large corrections for θ

Magnetic spectrometer @ PERC

Radius of gyration:

$$r(p,\theta) = \frac{p_{\perp}}{|q|B_3} = \frac{p}{|q|B_3} \cos\theta$$

- + large drift distances O(dm)
- no low momentum measurements
- large corrections for θ
- non-adiabatic transport of particles
- B_2 -field coupled with B_3 -field
- pitch angles easily distorted

b=0b=0.1 b=1 $b = \infty$

1000

1200

- + low momentum measurements
- + adiabatic transport of particles

- + low momentum measurements
- + adiabatic transport of particles
- + small corrections for heta
- + large acceptance of θ

- + low momentum measurements
- + adiabatic transport of particles
- + small corrections for heta
- + large acceptance of θ

- + low momentum measurements
- + adiabatic transport of particles
- + small corrections for heta
- + large acceptance of θ
- + high resolution: $\Delta p/p=14.4 \text{ keV/c /mm}$

small drift distances O(cm)

Neutron decay prOducts MOmentum Spectrometer

NoMoS Physics programme

G. Konrad, PoS(EPS-HEP2015)592

Research focus:

- Weak magnetism form factor f_2
 - study structure of weak interaction
- Beta asymmetry parameter *A*, electron-neutrino correlation coefficient *a*
 - determine weak coupling constants ratio $\lambda = g_A / g_V$
 - test CKM unitarity
- Fierz interference term *b*
 - non-zero value indicates existence of scalar or tensor interactions
 - caused by, e.g., yet unknown charged Higgs bosons or leptoquarks
- Oscillatory, sidereal effects in the case of Lorentz invariance violation

Goal:

Electron and proton spectroscopy on sub-10⁻⁴- respectively 10⁻³-level

NoMoS Physics programme

G. Konrad, PoS(EPS-HEP2015)592

Research focus:

- Weak magnetism form factor f_2
- Beta asymmetry parameter *A*, electron-neutrino correlation coefficient *a*
- Fierz interference term *b*
- Oscillatory, sidereal effects in the case of Lorentz invariance violation

Goal:

Electron and proton spectroscopy on sub-10⁻⁴- respectively 10⁻³-level

Theoretical prerequisite: cooperation with M. Pitschmann *et al.*, TU Wien

- Extension of analysis of correlation coefficients a, A, B, C, and D to order 10^{-5} within SM
- Completion of analysis of non-standard correlation coefficients N, G, R, Q, and L to order 10^{-3} within SM
- Most precise evaluation possible of g_S and g_T within SM and beyond M. Pitschmann et al., Phys. Rev. D91 (2015) 074004
- Comprehensive analysis of standard correlation coefficients to order 10⁻⁴
 A. Ivanov *et al.*, Phys. Rev. D88, 073002 (2013)

NoMoS Collaboration

H. Abele¹, J. Bosina^{1,2,3}, C. Brousse^{2,4},
J. Erhart¹, H. Fillunger^{1,2}, M. Klopf¹,
G. K.^{1,2}, M. Pitschmann¹, T. Soldner³,
K. Suzuki², X. Wang¹, J. Zmeskal²

FOR SCIENCE

Two Ph.D. positions open

Preliminary measurement plan of NoMoS

ANNI A COLD NEUTRON BEAM FACILITY FOR PARTICLE PHYSICS AT THE ESS

ANNI Overview

Scientific case

- neutron beta decay
- hadronic weak interaction
- electromagnetic properties
- technical developments
- etc.

First pulsed source with higher time-averaged flux than ILL

Parameter	Value
Capture flux full spectrum	1.8 × 10 ¹⁰ n /cm ² /s
Capture flux 2 – 8 Å	$1.4 \times 10^{10} n /cm^2/s$
Particle flux @ 8.9 Å	$5.8 \times 10^8 / \text{cm}^2/\text{s}/\text{\AA}$
Divergence distribution FWHM	42 mrad horizontal, 22 mrad vertical
Instantaneous bandwidth	0.43 Å

C. Theroine et al., *ESS instrument construction proposal ANNI*, 2015 E. Klinkby, T. Soldner, J. Phys.: Conf. Ser. [ECNS2015] (2016), accepted

ANNI Collaboration

Hartmut Abele¹ Gertrud Konrad^{1,2} Bastian Märkisch³ Ulrich Schmidt⁴ Torsten Soldner⁵ Camille Theroine^{3,6}

New partners very welcome!

Summary and Outlook

- Neutron alphabet
 - deciphers the Standard Model of particle physics
 - observables in neutron β -decay are abundant
- Precision measurements of neutron β-decay
 - address important open questions of particle physics, astrophysics, and cosmology
 - 10^{-3} level *b* measurements complementary to improved LHC results
- New facility PERC at FRM II
 - clean and bright source of neutron decay products
 - sensitivity improved to sub-10⁻⁴-level
 - systematics $\leq 10^{-4}$
- ÖAW New Frontiers Group NoMoS
 - novel R×B drift spectrometer for momentum spectroscopy
 - comprehensive physics programme
- Future possibilities: ANNI facility at ESS

Thanks to my colleagues @ SMI and TU Wien

BACKUP

Error budget of PERC

Source of error	Size of correction	Size of error
Non-uniform neutron beam	2.5 x 10 ⁻⁴	5 x 10 ⁻⁵
Other edge effects on e/p-window	4.0 x 10 ⁻⁴	1 x 10 ⁻⁴
Magn. mirror effect, contin's neutron beam	1.4 x 10 ⁻²	2 x 10 ⁻⁴
Magn. mirror effect, pulsed neutron beam	5.0 x 10 ⁻⁵	< 10 ⁻⁵
Non-adiabatic e/p-transport	5.0 x 10 ⁻⁵	5 x 10 ⁻⁵
Background from neutron guide	2.0 x 10 ⁻³	1 x 10 ⁻⁴
Background from neutron beam stop	2.0 x 10 ⁻⁴	1 x 10 ⁻⁵
Backscattering of e/p-window	1.0 x 10 ⁻³	1 x 10 ⁻⁴
Backscattering off e/p beam dump	5.0 x 10 ⁻⁵	1 x 10 ⁻⁵
Backscattering off plastic scintillator	2.0 x 10 ⁻³	4 x 10 ⁻⁴
same with active e/p-beam dump	-	1 x 10 ⁻⁴
D. Dubbers et al., NIM A596 (2008) 238 and arXiv:0709.4440		
Neutron beam polarisation	< 10 ⁻⁴	< 10 ⁻⁴
C. Klauser et al., J. Phys.: Conf. Ser. 340 (2012) 012011 C. Klauser, Ph.D. thesis, TU Wien, 2013		