Cold and Ultra-Cold Neutrons as Probes of New Physics

Gertrud Konrad

Stefan-Meyer-Institut Wien, ÖAW, Austria Atominstitut, TU Wien, Austria

International Nuclear Physics Conference

Adelaide, Australia September 11 – 16, 2016

Composition of the Universe

Nature of DM?

- Axions
- WIMPs
- Sterile neutrinos
- Gravitinos
- Mirror matter
- Mirror matter
- etc.

- **1956** Lee & Yang: Phys. Rev. 104, 254 (1956) mirror world can restore global parity symmetry
- **2001** Berezhiani, Comelli, & Vilante: Phys. Lett. B503, 362 (2001) mirror matter as cosmological DM candidate, if $T'/T \ll 1$

Mirror dark matter

Nature of DM?

- Axions
- WIMPs
- Sterile neutrinos
- Gravitinos
- Mirror matter
- Mirror matter
- etc.

 $\varepsilon = \frac{\hbar}{\tau} < 6.6 \times 10^{-16} \text{eV}$ $\Rightarrow \tau_{nn\prime} > 1\text{s}$

- **1956** Lee & Yang: Phys. Rev. 104, 254 (1956) mirror world can restore global parity symmetry
- **2001** Berezhiani, Comelli, & Vilante: Phys. Lett. B503, 362 (2001) mirror matter as cosmological DM candidate, if $T'/T \ll 1$
- **2006** Berezhiani & Bento: Phys. Rev. Lett. 96, 081801 (2006) neutrons n can oscillate to mirror neutrons n'

Neutron – mirror-neutron oscillations

$$P_{nn'}(B,B',t) = p(B,B',t) + d(B,B',t) \cdot \cos\beta$$

2008 Analysis Serebrov et al.: Phys. Lett. B663, 181 (2008)

 $\tau_{nn'} > 414 \text{ s} (90 \% \text{ C.L.}), \text{ for } B' = 0$

magnetometers

A.P. Serebrov et al., Phys. Lett. B663, 181 (2008)

September 15, 2016

 \vec{R}

Neutron – mirror-neutron oscillations

$$P_{nn'}(B,B',t) = p(B,B',t) + d(B,B',t) \cdot \cos\beta$$

B field variation: \pm 0.2 G up/down

2008 Analysis Serebrov et al.: Phys. Lett. B663, 181 (2008) $\tau_{nn\prime} > 414$ s (90 % C.L.), for B' = 0

2012 *Re-analysis* Berezhiani & Nesti: Eur. Phys. J. C72, 1974 (2012) $A_{B}(t) = \frac{N_{-B}(t) - N_{B}(t)}{N_{-B}(t) + N_{B}(t)} = (7.0 \pm 1.3) \times 10^{-4} \Rightarrow \tau_{nn'} \sim 2 - 10 \text{ s, } B' \sim 0.1 \text{ G}$

magnetometers

A.P. Serebrov et al., Phys. Lett. B663, 181 (2008)

 \vec{R}

Neutron – mirror-neutron oscillations

$$P_{nn'}(B,B',t) = p(B,B',t) + d(B,B',t) \cdot \cos\beta$$

B field variation: \pm 0.2 G up/down

A.P. Serebrov et al., Phys. Lett. B663, 181 (2008)

 $\tau_{nn'} > 414$ s (90 % C.L.), for B' = 0

2012 *Re-analysis* Berezhiani & Nesti: Eur. Phys. J. C72, 1974 (2012) $A_{B}(t) = \frac{N_{-B}(t) - N_{B}(t)}{N_{-B}(t) + N_{B}(t)} = (7.0 \pm 1.3) \times 10^{-4} \Rightarrow \tau_{nn'} \sim 2 - 10 \text{ s, } B' \sim 0.1 \text{ G}$

2009 Altarev et al.: Phys. Rev. D80, 032003 (2009)

 $au_{nn\prime}$ > 12 s (95 % C.L.), for $0 \le B' \le 12.5~\mu\mathrm{T}$

Neutrons as Probes of New Physics, INPC2016, Adelaide

 \vec{R}

Neutron oscillations

Planned measurements:

- SNS (ORNL, Oak Ridge)
 → Beam regeneration experiment
- WWR-M (PNPI, Gatchina):
 - nn' oscillations

Neutron oscillations

Neutron oscillations

September 15, 2016

Based on A. Fomin, UCN Workshop, Mainz, 2016

Outline

- Neutron mirror neutron oscillations
- The neutron
 - Properties of the neutron
 - Neutron research facilities
- Neutrons as probes of (new) physics
 - Overview
 - Neutron β-decay
 - Neutron EDM
- Summary and Outlook

THE NEUTRON

Properties of the neutron

Property	Value
Charge q_n	< 1 ×10 ⁻²¹ e
Radius r _n	~ 1 fm
Mass m_n	939.565379(21) MeV/c²
Mass difference $m_n - m_p$	1.29333217(42) MeV/c ²
Lifetime $ au_n$	(880.3±1.1) s
Spin	1/2
Magnetic dipole moment μ_n	-1.9130472(45) $\mu_{ m N}$
Electric dipole moment d_n	< 2.9 ×10 ⁻²⁶ e⋅cm
Electric polarizability $lpha_n$	118(11) ×10 ⁻⁵ fm ³
Magnetic polarizability ${\pmb eta}_n$	37(12) ×10 ⁻⁵ fm ³

K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) D. Dubbers and M.G. Schmidt, Rev. Mod. Phys. 83, 1111 (2011) F.E. Wietfeldt and G.L. Greene, Rev. Mod. Phys. 83, 1173 (2011)

Neutron research

and many more, in particular nuclear and particle physics

Neutron research facilities worldwide

Existing facilities:

- 9 North America
- 3 South America
- 19 Europe
- 1 Africa
- 8 Asia
- 1 Australia

Neutronsources.org

Neutron research facilities worldwide

Existing facilities:

- 9 North America
- 3 South America
- 19 Europe
- 1 Africa
- 8 Asia
- 1 Australia

Under construction:

Neutronsources.org

September 15, 2016

Neutron production

Nuclear fission

\rightarrow 1 – 2 neutrons /fission

Neutron production

Nuclear fission

Spallation

 \rightarrow 1 – 2 neutrons /fission

\rightarrow 30 – 40 neutrons /proton

Proton

Lead

n

n

a 🔍

n

n

γí

Neutron sources

Research reactors: FRM II, 20 MW

neutron temperature

Neutron sources

Spallation sources: SNS, 1.4 MW

Neutron sources

Production of ultra cold neutrons

Production of ultra cold neutrons

UCN Sources worldwide

Туре	Name	Density in cell	Useful ave. current (10 ⁴ /s)	s) Source storage time (s)	
Turbine	ILL Turbine	39	100 – 200	few s	
	ILL SUN-2 ~15 peak (60 s, 30 l)		Max = 1, drain time \sim 150 s	200 (4 l, Fomblin, ~80 neV)	
LHe	RCNP/KEK	26	3.2	81 (Ni)	
	SuperSUN	~150 peak (60 s, 30 l)	10 polarized	800 (12 l, 230 neV mag. trap)	
	TRIUMF/KEK	600 polarized	~100 polarized	100 (NiP)	
	PNPI	12000	7000	10 (from He @ 1.2 K)	
LANL		\sim 50 (gatevalve) \sim 25 polarized	10 – 20 5 – 10 polarized	40	
SD ₂	PSI	~23 peak	~70 peak, 20 M/300 s = 6.7	~90 Tue 15:40 SY	
	Mainz	10	3.2	few s	
	FRM II	~5000	6000	few s	
	PULSTAR	>30	>10	few s	

September 15, 2016

Based on overview by A. Young, UCN Workshop, Mainz, 2016

NEUTRONS AS PROBES OF (NEW) PHYSICS

Neutron particle physics

- Neutron oscillations

 → B number violation
 → Mirror universes
- Neutron β -decay \rightarrow Electroweak SM \rightarrow BSM
- Neutron EDM
 - \rightarrow Baryogenesis
 - $\rightarrow CP$ Violation
- Gravitational quantum levels
 - \rightarrow Extra dimensions
 - \rightarrow New forces
 - \rightarrow Dark matter
 - \rightarrow Fine structure constant α

- Neutron interferometry

 → Fundamental tests of QM
 → Chameleon
- Neutron charge $\rightarrow B L$ Symmetry violation
- Neutron diffraction
 - \rightarrow Spin-dependent short range interaction
- Neutron scattering
 → Short range forces
- Hadronic weak interactions
 → Non-perturbative limit of QCD
- Reactor neutrinos
 → Light sterile neutrinos
- Etc.

H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008) D. Dubbers and M.G Schmidt, Rev. Mod. Phys. 83, 1111 (2011) B.R. Holstein et al., J. Phys. G 41(11) (2014), articles 114001 to 114007

Neutron particle physics

• Neutron oscillations \searrow Fri 11:10 SY \Rightarrow B number violation

 \rightarrow Mirror universes

- Neutron β -decay Tue 16:35 SY \rightarrow Electroweak SM Fri 11:40 SY \rightarrow BSM
- Neutron EDM Tue 15:40 \rightarrow Baryogenesis - 16:35 SY $\rightarrow CP$ Violation
- Gravitational quantum levels
 - \rightarrow Extra dimensions
 - \rightarrow New forces
 - \rightarrow Dark matter
 - \rightarrow Fine structure constant α

- Neutron interferometry
 → Fundamental tests of QM
 - \rightarrow Chameleon
- Neutron charge $\rightarrow B L$ Symmetry violation
- Neutron diffraction
 - \rightarrow Spin-dependent short range interaction
- Neutron scattering \rightarrow Short range forces
- Fri 11:25 SY
- Hadronic weak interactions

Fri 10·30

- \rightarrow Non-perturbative limit of QCD
- Reactor neutrinos \sum Fri 11:00 NN \rightarrow Light sterile nel trinos

September 15, 2016

Neutrons as Probes of New Physics, INPC2016, Adelaide

Etc.

•

.

Neutron particle physics

- Neutron oscillations
 → B number violation
 → Mirror universes
- Neutron β -decay \rightarrow Electroweak SM \rightarrow BSM
- Neutron EDM
 - \rightarrow Baryogenesis
 - $\rightarrow CP$ Violation
- Gravitational quantum levels
 → Extra dimensions
 → New forces
 → Dark matter
 - \rightarrow Fine structure constant α

- Neutron interferometry \rightarrow Fundamental tests of QM
 - ightarrow Chameleon
- Neutron charge $\rightarrow B L$ Symmetry violation
- Neutron diffraction
 - ightarrow Spin-dependent short range interaction
- Neutron scattering
 - ightarrow Short range forces
- Hadronic weak interactions \sum \rightarrow Non-perturbative limit of QCD
 - Reactor neutrinos \rightarrow Light sterile neutrinos

NPDGamma

Neutrino-4

STEREO

NIST

ATI

UMZ

ATI

Neutron β-decay

Primordial nucleosynthesis

Primordial nucleosynthesis

Primordial ⁴He abundance

Primordial ⁴He abundance

 $\rightarrow \tau_n$ confirms $\eta = n_b/n_\gamma$ from cosmology

K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014)

Why investigate neutron β -decay?

- Provide value of τ_n
 - primordial ⁴He abundance

Energy generation within the Sun

Energy generation within the Sun

Current status of g_A/g_V

Lattice QCD

T. Bhattacharya et al., LA-UR-16-20522, arXiv:1606.07049 (2016)

Current status of g_A/g_V

Lattice QCD

Neutron β -decay exp.

T. Bhattacharya et al., LA-UR-16-20522, arXiv:1606.07049 (2016)

K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014)

Neutrons as Probes of New Physics, INPC2016, Adelaide

Why investigate neutron β -decay?

- Provide value of τ_n
 - primordial ⁴He abundance
- Provide value of λ for other fields of research
 - Big Bang nucleosynthesis, energy generation in Sun, neutron star formation
 - detection efficiency of neutrino and LHC detectors
 - key benchmark for LQCD calculation of hadron structure (exascale computing)

Neutron β-decay

 $n \rightarrow p + e^- + \overline{\nu}_e + 782.334 \text{keV}$:

• prototype of weak interactions

Neutron β-decay

~

 $n \rightarrow p + e^- + \overline{\nu_e} + 782.334 \text{keV}$:

• prototype of weak interactions

• described by
$$V - A$$
 theory: $H_{V-A} = \frac{G_F V_{ud}}{\sqrt{2}} \langle p | \gamma_{\mu} \left(1 + \frac{g_A}{g_V} \gamma^5 \right) | n \rangle \langle e^- | \gamma_{\mu} \left(1 - \gamma_5 \right) | v_e \rangle + h.c.$

A. Czarnecki et al., PR D70, 093006 (2004)

The neutron alphabet

The neutron alphabet within SM

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} = \frac{1}{2(2\pi)^{5}} \overbrace{G_{F}^{2}|V_{ud}|^{2}(1+3|\lambda|^{2})}^{\propto} p_{e}E_{e}(E_{0}-E_{e})^{2}$$

$$\times \left[1 + a\frac{\vec{p}_{e}\cdot\vec{p}_{v}}{E_{e}E_{v}} + b\frac{m_{e}}{E_{e}} + \frac{\langle\vec{\sigma}_{n}\rangle}{\vec{\sigma}_{n}} \cdot \left(A\frac{\vec{p}_{e}}{E_{e}} + B\frac{\vec{p}_{v}}{E_{v}} + D\frac{\vec{p}_{e}\times\vec{p}_{v}}{E_{e}E_{v}}\right)\right]$$

• 2 unknown parameters

$$V_{\rm ud}$$
, $\lambda = g_{\rm A}/g_{\rm V}$

• 20 or more observables

$$\tau_{n}, a, b, A, B, C, D, \dots$$

$$a = \frac{1 - |\lambda|^{2}}{1 + 3|\lambda|^{2}}, \quad A = -2 \frac{|\lambda|^{2} + \operatorname{Re}(\lambda)}{1 + 3|\lambda|^{2}}$$

$$A(T_{e}) = A \cdot \left(1 + c + \underbrace{a_{WM}(T_{e}, \lambda, f_{2})}_{\approx 2\%}\right)$$

• yet unmeasured

Neutrons as Probes of New Physics, INPC2016, Adelaide

Current status of neutron alphabet

Observable	Standard Model	Status PDG 2015
Lifetime	$\tau_{n} = \frac{1}{ V_{ud} ^{2}} \frac{(4908.7 \pm 1.9)s}{(1+3 \lambda ^{2})}$	$\Delta \tau_n / \tau_n = 1 \times 10^{-3}$
Ratio of weak coupling constants	$\lambda = g_{\rm A} / g_{\rm V} = \lambda e^{i\phi}$	$\Delta \lambda / \lambda = 2 \times 10^{-3}$
Electron-neutrino correlation	$\boldsymbol{a} = \frac{1 - \boldsymbol{\lambda} ^2}{1 + 3 \boldsymbol{\lambda} ^2}$	$\Delta a/a = 3.9 \times 10^{-2}$
Fierz interference term	b = 0	yet unmeasured
Beta asymmetry	$\mathbf{A} = -2 \frac{\left \boldsymbol{\lambda}\right ^2 + \left \boldsymbol{\lambda}\right \cos \boldsymbol{\phi}}{1 + 3 \left \boldsymbol{\lambda}\right ^2}$	$\Delta A/A = 8 \times 10^{-3}$
Neutrino asymmetry	$\boldsymbol{B} = 2 \frac{ \boldsymbol{\lambda} ^2 - \boldsymbol{\lambda} \cos \phi}{1 + 3 \boldsymbol{\lambda} ^2}$	$\Delta B/B = 3 \times 10^{-3}$
Proton asymmetry	$\boldsymbol{C} = -0.27484 \left(\boldsymbol{A} + \boldsymbol{B}\right)$	$\Delta C/C = 1.1 \times 10^{-2}$
Triple correlation	$D = 2 \frac{ \lambda \sin \phi}{1+3 \lambda ^2} \equiv 0 \qquad \phi = 180^{\circ}$	$D = (-1 \pm 2) \times 10^{-4}$ $\phi = (180.02 \pm 0.03)^{\circ}$

Why investigate neutron β-decay?

- Provide value of τ_n
 - primordial ⁴He abundance
- Provide value of λ for other fields of research
 - Big Bang nucleosynthesis, energy generation in Sun, neutron star formation
 - detection efficiency of neutrino and LHC detectors
 - key benchmark for LQCD calculation of hadron structure (exascale computing)
- Test the Standard Model of particle physics
 - self-consistency of the Standard Model
 - unitarity of Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix

Present best test of the Standard Model $1 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - (1 \pm 5) \times 10^{-4}$

 $\begin{pmatrix} \mathbf{d'} \\ \mathbf{s'} \\ \mathbf{b'} \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{td} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$

Current status of CKM unitarity

J.C. Hardy and I.S. Towner, Phys. Rev. C 91, 025501 (2015) J.C. Hardy and I.S. Towner, in: Proc. of CIPANP2015, arXiv:1509.04743

September 15, 2016

Current status of CKM unitarity

J.C. Hardy and I.S. Towner, Phys. Rev. C 91, 025501 (2015) J.C. Hardy and I.S. Towner, in: Proc. of CIPANP2015, arXiv:1509.04743 Current status of τ_n

 \rightarrow Beam and bottle averages differ by \sim 3.8 σ

Why investigate neutron β -decay?

- Provide value of τ_n
 - primordial ⁴He abundance
- Provide value of λ for other fields of research
 - Big Bang nucleosynthesis, energy generation in Sun, neutron star formation
 - detection efficiency of neutrino and LHC detectors
 - key benchmark for LQCD calculation of hadron structure (exascale computing)
- Test the Standard Model of particle physics
 - self-consistency of the Standard Model
 - unitarity of Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix
- Search for `physics beyond' and new symmetry concepts

(d')		(V_{ud})	$V_{\rm us}$	V_{ub}	1	(d)
s'	=	$V_{\rm cd}$	$V_{\rm cs}$	V _{cb}	•	S
(b')		V_{td}	$V_{\rm td}$	$V_{\rm tb}$		b

The neutron alphabet beyond SM

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} = \frac{1}{2(2\pi)^{5}} \underbrace{G_{F}^{2} |V_{ud}|^{2} (1+3|\lambda|^{2})}_{(1+3|\lambda|^{2})} p_{e}E_{e} (E_{0} - E_{e})^{2} \qquad \text{J.D. Jackson et al., PR106, 517 (1957)} \\ \times \left[1 + a \frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e}E_{v}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \vec{\sigma}_{n} \rangle}{\vec{\sigma}_{n}} \cdot \left(A \frac{\vec{p}_{e}}{E_{e}} + B \frac{\vec{p}_{v}}{E_{v}} + D \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e}E_{v}}\right)\right]$$

• 9 unknown parameters:

$$V_{\rm ud}, L_j, R_j, j=V, A, S, T$$

- 20 or more observables:
 - $\tau_{\rm n}, a, b, A, B, C, D, \dots$

 $\xi a = |L_{V}|^{2} - |L_{A}|^{2} - |L_{S}|^{2} + |L_{T}|^{2} + |R_{V}|^{2} - |R_{A}|^{2} - |R_{S}|^{2} + |R_{T}|^{2}$ $\xi b = 2\Re \left(L_{S}L_{V}^{*} + 3L_{A}L_{T}^{*} + R_{S}R_{V}^{*} + 3R_{A}R_{T}^{*} \right) \text{ yet unmeasured}$ $\xi A = -2\Re \left(|L_{A}|^{2} + L_{V}L_{A}^{*} - |L_{T}|^{2} - L_{S}L_{T}^{*} - |R_{A}|^{2} - R_{V}R_{A}^{*} + |R_{T}|^{2} + R_{S}R_{T}^{*} \right)$ $\xi = |L_{V}|^{2} + 3|L_{A}|^{2} + |L_{S}|^{2} + 3|L_{T}|^{2} + |R_{V}|^{2} + 3|R_{A}|^{2} + |R_{S}|^{2} + 3|R_{T}|^{2}$

Sensitivity to `new physics'

0.15

0.10-

0.05-

-0.05-

-0.10-

-0.15-

0.15 -

0.10-

0.05-

-0.05-

-0.15-

 $R_{\rm T}^{\prime}/L_{\rm A}$

-00.0 R/L

Right-handed S, T

"present limits"

muon decay

'90% C.L."

neutrino mass

0.05 0.10 0.15

"future limits"

muon decay .

neutrino mass

(68% C.L.)

"90% C.L."

(68%,C.L.)

(68% C.L.)

(68% C.L.)

 $\Delta \chi^2$ C.L.

2.30 68.3%

4.61 90%

6.17 95.4

mass

neutron and nuclear decays

 $R_{\rm S}/L_{\rm V}$

0.00

 $R_{\rm s}/L_{\rm v}$

0.05

(survey, 95% C.L.)

-0.15 -0.10 -0.05 0.00

 $\Delta \chi^2$ C.L.

2.30 68.3%

4.61 90%

6.17 95.4%

neutrino mass

-0.10 neutron and nuclear decays

(survey, 95% C.L.)

-0.15 -0.10 -0.05

(68% C

neutrino

68% C

September 15, 2016

G. Konrad et al., in: Proc. BEYOND 2010, World Scientific, 660, 2011, arXiv: 1007.3027v2 (2010)

0.10 0.15

Present 2015

The neutron alphabet beyond SM

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} = \frac{1}{2(2\pi)^{5}} \underbrace{G_{F}^{2} |V_{ud}|^{2} (1+3|\lambda|^{2})}_{(1+3|\lambda|^{2})} p_{e}E_{e} (E_{0} - E_{e})^{2} \qquad \text{J.D. Jackson et al., PR106, 517 (1957)} \\ \times \left[1 + a \frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e}E_{v}} + b \frac{m_{e}}{E_{e}} + \frac{\langle \vec{\sigma}_{n} \rangle}{\vec{\sigma}_{n}} \cdot \left(A \frac{\vec{p}_{e}}{E_{e}} + B \frac{\vec{p}_{v}}{E_{v}} + D \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e}E_{v}}\right)\right]$$

• 9 unknown parameters:

 $V_{\rm ud}, L_j, R_j, j = V, A, S, T$

• 20 or more observables:

 $\tau_{\rm n}$, a, b, A, B, C, D, ...

 $\xi a = |L_{V}|^{2} - |L_{A}|^{2} - |L_{S}|^{2} + |L_{T}|^{2} + |R_{V}|^{2} - |R_{A}|^{2} - |R_{S}|^{2} + |R_{T}|^{2}$ $\xi b = 2\Re \left(L_{S}L_{V}^{*} + 3L_{A}L_{T}^{*} + R_{S}R_{V}^{*} + 3R_{A}R_{T}^{*} \right) \text{ yet unmeasured}$ $\xi A = -2\Re \left(|L_{A}|^{2} + L_{V}L_{A}^{*} - |L_{T}|^{2} - L_{S}L_{T}^{*} - |R_{A}|^{2} - R_{V}R_{A}^{*} + |R_{T}|^{2} + R_{S}R_{T}^{*} \right)$ $\xi = |L_{V}|^{2} + 3|L_{A}|^{2} + |L_{S}|^{2} + 3|L_{T}|^{2} + |R_{V}|^{2} + 3|R_{A}|^{2} + |R_{S}|^{2} + 3|R_{T}|^{2}$

Prospects for *S* **and** *T* **interactions in LHC era**

 $> 10^{-3}$ level b measurements complementary to improved LHC results

T. Bhattacharya et al., LA-UR-16-20522, arXiv:1606.07049 (2016) see also: O. Naviliat-Cuncic & M. González-Alonso, Ann. Phys. (Berlin) 525 (2013) 600

Why investigate neutron β -decay?

- Provide value of τ_n
 - primordial ⁴He abundance
- Provide value of λ for other fields of research
 - Big Bang nucleosynthesis, energy generation in Sun, neutron star formation
 - detection efficiency of neutrino and LHC detectors
 - key benchmark for LQCD calculation of hadron structure (exascale computing)
- Test the Standard Model of particle physics
 - self-consistency of the Standard Model
 - unitarity of Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix
- Search for `physics beyond' and new symmetry concepts
 - right-handed admixtures, exotic scalar and tensor admixtures
 - left-right symmetry, supersymmetry (SUSY), leptoquarks, etc.
 - SUSY deviations from CKM unitarity $\geq 10^{-4}$ fall in LHC inaccessible region
 - 10⁻³ level b measurements complementary to improved LHC results

Why investigate neutron β -decay?

- Provide value of τ_n
 - primordial ⁴He abundance
- Provide value of λ for other fields of research
 - Big Bang nucleosynthesis, energy generation in Sun, neutron star formation
 - detection efficiency of neutrino and LHC detectors
 - key benchmark for LQCD calculation of hadron structure (exascale computing)
- Test the Standard Model of particle physics
 - self-consistency of the Standard Model
 - unitarity of Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix
- Search for `physics beyond' and new symmetry concepts
 - right-handed admixtures, exotic scalar and tensor admixtures
 - left-right symmetry, supersymmetry (SUSY), leptoquarks, etc.
 - SUSY deviations from CKM unitarity $\geq 10^{-4}$ fall in LHC inaccessible region
 - 10⁻³ level *b* measurements complementary to improved LHC results

Experiments to measure Fierz term *b*

Statistics	high flux $\phi = 2 \times 10^{10}$ cm ⁻² s ⁻¹ and high decay rate = 1×10^{6} m ⁻¹ s ⁻¹		
Sensitivity	improved by up to 2 orders of magnitude to sub-10 ⁻⁴ - evel		
Systematics	≤ 10 ⁻⁴	for e ⁻), especially $\Delta P/P = 10^{-4}$ C. Klauser, PhD, TU Wien, 2013	
Versatility	a, b, A,	B, C, f ₂ , C. Klauser et al, JPCS340, 012011 (2012)	
Status	manufacturing within 11, commissioning within 17 months		

D. Dubbers et al., NIM A 596, 238 (2008)G. K. et al., J. Phys.: Conf. Ser. 340, 012048 (2012)

September 15, 2016

Experiments to measure τ_n

Beam method @ J-PARC goal: Δτ_n = 1 s

PENeLOPE @ FRM II goal: $\Delta \tau_n = 0.1$ s

Neutrons as Probes of New Physics, INPC2016, Adelaide

Neutron EDM

EDM Reminder

Baryon asymmetry of Universe

• Electroweak SM expectation:

 $\frac{n_B - n_{\overline{B}}}{n_{\gamma}} \simeq 10^{-18}$

• Cosmological observation:

Sakharov criteria

- 1. Baryon number *B* violation
- 2. C, CP violation
- 3. Thermal non-equilibrium

Non-zero EDM violates ${\mathcal T}$ and ${\mathcal CP}$

Neutron EDM experiments

Neutron EDM experiments

Based on A. Serebrov, UCN Workshop, Mainz, 2016

Neutron EDM experiments

PNPI-PTI-ILL @ ILL

nEDM @ PSI

TUM/RAL/ILL @ ILL

BeamEDM @ ESS

nEDM @ SNS

RCNP/TRIUMF

Summary and Outlook

- High-precision experiments with cold and ultra-cold neutrons address some of the unanswered questions in particle physics, astrophysics, and cosmology
- Neutron particle physics very versatile
- Large number of new neutron sources and experiments
- New facilities and technological developments now give window for significant improvement in precision by one to two orders of magnitude
- τ_n confirms $\eta = n_b/n_\gamma$ from cosmology
- Neutron alphabet deciphers the Standard Model of particle physics
- 10⁻³ level *b* measurements complementary to improved LHC results
- New limit on neutron EDM $d_n < 2.9 \times 10^{-26} \text{ e} \cdot \text{cm}$ (nEDM @ PSI)

Thanks to my colleagues @ SMI and TU Wien

