

Exploring Pion and Nucleon Structure with Tagged Structure Functions

Thia Keppel

An experimental technique to probe the *target* regime in semi-inclusive deep inelastic scattering

- Nucleon valence structure at large x
- Probe the meson cloud of the nucleon
- Pion structure function
- Diffractive scattering, structure of the Pomeron
- Fracture functions
- N-N interactions, short range correlations, EMC effect
- DVCS, remove ~15% background from (e,e' Δ)γ, (e,e' π)γ,...) also neutron, pion DVCS!
- Lambda -> p pi- decay to measure p -> K+ Lambda kaon cloud of the nucleon
- Neutron spin structure

Understand nucleon structure at a deeper level

International Nuclear Physics Conference Adelaide, September 2016

BONUS at JLab – use fixed target tagging to create an effective free neutron target

F_2^n/F_2^p (and, hence, d/u) is essentially unknown at large x:

- Conflicting fundamental theory pictures

- Data inconclusive due to uncertainties in deuterium nuclear corrections

- Translates directly to large uncertainties on d(x), g(x) parton distribution functions

The BONUS approach: tag spectator proton at (very) low momentum and large angle in electron-deuteron scattering

BONUS in CLAS6 (e detector)

BoNuS GEM-based rTPC (low momentum p detector)

> Solenoid Magnet (track curvature in TPC)

Spectator Tagging - results

Tagged data – know nucleon momentum 7

Low momentum proton tagging *achieved*

TDIS at HERA – proton and *neutron* tag

ZEUS 0.2 $(1/\sigma_{inc})d\sigma_{LN}/dx_{I}$ ZEUS 40 pb 0.18 $Q^2 > 2 \text{ GeV}$ < 0.476 x²₁ GeV² 0.16 ystematic 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DESY 07-011 Nucl.Phys.B776(2007) 1-37 $x_1 = E^p / E^p_{beam} \simeq 1$

- The leading neutron results are <u>different from</u> <u>the proton.</u>
- There is no elastic (diffractive) peak present.
- Leading neutron rate ~ 2 times lower than leading proton rate for x_L<1.
- Proton isoscalar events include diffractive Pomeron
- Neutron events
 isovector only
 Pion ~(1-x₁)
- One pion exchange is the dominant mechanism.
 <u>Can extract pion</u>

structure function

DESY 09-185 Eur. Phys. J. C68 (2010) 381

DESY 08-176 JHEP06 (2009) 74

Pion structure function measurements hindered by lack of pion target

- Only have the rather scant data from HERA and pion Drell-Yan experiments
- The pion is fundamental simplest hadron with only two valence quarks.
- The pion plays a key role in nucleon and nuclear structure
 - QCD's Goldstone boson
 - Explains the long-range nucleonnucleon interaction
 - A basic part of the standard model of nuclear physics
- Many questions, for instance what is the origin of the d(bar) – u(bar) flavor asymmetry?
 - asymmetry in anti-quarks generated from pion valence distribution?

BONUS-type Tagging Facilitates HERA-type Probe of Meson Cloud at Jefferson Lab

Example: Sullivan process scattering from proton-pion fluctuation

Proposed TDIS Experiment: BONUS-type Detector....and.....

solenoid

superconducting

<u>C1 Approval for JLab Hall A:</u>

High luminosity,

50 μ Amp, \mathcal{L} = 3 x 10³⁶/cm² s

✓ Large acceptance

Super Bigbite ~70 msr, hadron spectrometer ✓ HCAL will be used in RTPC calibration Need to...

Add BONUS-type RTPC, requires solenoidal field Modify SBS for electron detection

Projected TDIS Kinematics – *optimized for meson cloud*

Projected Results II - neutron

F₂ⁿ(x) is inclusive DIS – tagged by additional low momentum, backward angle p as in BONUS

 $F_2^{(\pi N)}(x)$ is total *pion* contribution to structure function

Colored lines are expected *total* Delta and rho contribution for $250 < p_{proton} < 400 \text{ MeV/c}$.

Data for pion contribution are representative to show uncertainty

<u>Full</u> data set shown here
- all momentum bins in MeV/c

Do not show lowest momentum <x> = 0.075 data - run lower luminosity due to larger background

Projected Results – Pion Structure Function from TDIS at JLab

- Large x structure of the pion is of particular recent interest, verify resummed Drell-Yan results
- Q² range will check evolution
- Large x, low Q complementary to HERA low x, high Q

Tagged DIS at the EIC

The technique is uniquely suited to colliders: there is no target material absorbing low-momentum nucleons

• Secondary high dispersive ion focus ~40 m downstream of IP

TDIS opens a door to access effective (neutron, pion, kaon..?) targets

- critical, fundamental hadron structure measurements
- pion structure function
- TDIS opens a door to probe meson cloud of the nucleon
 - direct measurement of nucleon-meson fluctuation component of DIS
 - very few experiments to date
 - fundamental QCD
 - measurement of isospin dependence (p-n difference)

Understand nucleon structure at a deeper level

<u> Thank You!!!</u>

International Nuclear Physics Conference Adelaide, September 2016

<u>Backups</u>

International Nuclear Physics Conference Adelaide, September 2016

Developing the F_2^{π} case specifically

Pion flux is largest uncertainty, ~10-20%

Can also normalize to Drell-Yan (5% uncertainty)....

Translates Directly to Large x Valence d,g pdf Uncertainties

Tagging Facilitates TDIS Probe of Meson Cloud: T²DIS Example: Sullivan process scattering from neutron-pion fluctuation

Deuterium Target

detect scattered electron – large acceptance a plus

How to estimate rates?

• Use Sullivan process and pion cloud model

= 0 [GeV]

0.2

0.1

vector

pseudoscalar

0.4

0.3 X 0.6

Edardp [mbc3/GeV]

0.06

 $F_2^{(MN)}(x)$

$$F_2^{(\pi N)}(x) = \int_x^1 dz \, f_{\pi N}(z) \, F_{2\pi}\Big(rac{x}{z}\Big)$$

$$f_{\pi N}(z) = c_I rac{g_{\pi NN}^2}{16\pi^2} \int_0^\infty rac{dk_\perp^2}{(1-z)} rac{G_{\pi N}^2}{z \; (M^2 - s_{\pi N})^2} \left(rac{k_\perp^2 + z^2 M^2}{1-z}
ight)^2$$

 $F_2^{(\pi N)}$ = contribution to inclusive F_2 from scattering off of the virtual pion, *use for estimate*

 $f_{\pi N}(z) = \text{light-cone momentum}$ distribution of pions in the nucleon

Pion expected to be dominant – also estimated ρ, Δ

Form factor $G\pi N$ constrained by comparing the meson cloud contributions with data on inclusive pp \rightarrow nX scattering

Light-cone momentum distributions, $f\pi(\rho)N$ and $f\pi(\rho)\Delta$, as a function of the meson light-cone momentum fraction

$\theta_{2} = 35^{\circ}$ $F_{2}\pi N$ Convolute distribution structure meson (fr

0.4

0.8

Convolute the light-cone distributions with the structure function of the meson (from GRV) Important to note – kinematic limits:

- z ~< $|\mathbf{k}|/M$, where **k** is π 3-momentum = -**p'**
- 60 < **k** < 400 MeV/c corresponds to z < ~0.2
- Also, x < z!
- Low x, high W at 11 GeV means $Q^2 \sim 2 \text{ GeV}^2$

T. J. Hobbs, T. Londergan, W. Melnitchouk, et al. (2014, in preparation)

H. Holtmann, A. Szczurek and J. Speth, Nucl. Phys. A 596, 631 (1996)

W. Melnitchouk and A. W. Thomas, Z. Phys. A 353, 311 (1995)

Projected Data Example: Neutron Structure at the (m)EIC

e + D → e' + p + X a la BONUS $\alpha_R \equiv 2(E_R + p_R^z)/(E_D + p_D^z)$ residue = free neutron

Isovector $F_2^{p} - F_2^{n}$ studies of small-x dynamics in the non-singlet sector, largely unexplored (QCD structure of Reggeon exchange, non-singlet diffraction, etc.).

TDIS measurements require coverage for [protons] with low momenta relative to beam momentum (pT < 200 MeV, pT/ p(beam) ~ 0.8 – 1.2), and good momentum resolution (Δ pT ~ 20 MeV).

TDIS also requires that the intrinsic momentum spread in the ion beam be small to allow for accurate reconstruction.

MEIC being designed for this purpose