The New Stage of $S=-2$ Hypernuclear Study
Opened with a New High-resolution Spectrometer

S. Kanatsuki1, N. Amano1, H. Ekawa1,2, T. Gogami3, E. Hirose4,
Y. Ichikawa2, S. Kato5, M. Moritsu6, T. Nanamura1, T. Nagae1,
H. Takahashi4, T. Takahashi4, K. Takenaka1, and the J-PARC E05 collaboration

1Kyoto University, 2JAEA, 3RCNP, 4KEK, 5Yamagata University, 6Osaka University

INPC 2016, Adelaide
12 September 2016
The New Stage of $S=−2$ Hypernuclear Study
Opened with a New High-resolution Spectrometer

Contents

• Introduction
 • Motivation of hypernuclear physics
 • Previous experiments
• Spectroscopy of Ξ-hypernuclei at J-PARC
 • Experimental setup
 • Future extension
• Status of new spectrometer
 • Design
 • Magnet construction and field measurement
• Summary
Motivation

• Baryon-baryon interaction in $SU_f(3)$
• Role of strangeness in dense nuclear matter

• $S=-2$ Ξ, $\Lambda\Lambda$
 • a few emulsion events
 • limited information

• $S=-1$ Λ, Σ
 • hypernuclear structure
 • (K^-,π), (π^+,K^+), $(e,e'K^+)$ etc
 • γ-ray spectroscopy
 → effective ΛN, ΣN interactions

• $S=0$ p, n
 • a lot of NN scattering data
 → realistic nuclear force
Emulsion experiment

KEK-E373

- "NAGARA" event
 - uniquely identified as $^\Lambda\Lambda^6$He
 - $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17$ MeV
 - weakly attractive

 J.K. Ahn et al., PRC 88 (2013) 014003

- "KISO" event
 - Ξ^{-}^{14}N system
 - $\Xi^{-}+^{14}$N$\rightarrow^{10}_{\Lambda}Be+^{5}_{\Lambda}$He
 - $B_{\Xi^{-}} = 1.11$ or 4.38 (± 0.25) MeV $\pm \Gamma_{\text{conv.}}/2$

S=−2 hypernuclei do exist!
→ systematic study

H. Takahashi et al., PRL 87 (2001) 212502

K. Nakazawa et al., PTEP (2015) 3, 033D02
Spectroscopic Study

BNL-E885: $^{12}\text{C}(K^-,K^+)$ at 1.8 GeV/c

- missing-mass spectroscopy
- $d\sigma/d\Omega$ ($-20 < E < 0$ MeV)
 - $\theta < 14^\circ$: 67 events, 42\pm5 nb/sr
 - $\theta < 8^\circ$: 42 events, 89\pm14 nb/sr
 - "evidence" of existence of Ξ bound state
- mass resolution 14 MeV FWHM
 - no clear peak
 - shape analysis $\Rightarrow V_\Xi \sim -14$ MeV?

Better resolution and more statistics \Rightarrow J-PARC

P. Khaustov et al., PRC 61 (2000) 054603
Spectroscopy Experiment at J-PARC
Beam Intensity at J-PARC

Summary of the K beam intensity at K1.8 beam line and accelerator power

80kW & 1.2MK⁻/spill expected in late 2018 → exceed BNL intensity

BNL-AGS D-line 1×10^6 K/spill, $K/\pi \sim 1$, spill duration 3.6s

<table>
<thead>
<tr>
<th>K-beam rate (M/spill)</th>
<th>Acceptance</th>
<th>Path length</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS D-line</td>
<td>6.17 msr%</td>
<td>31.4 m</td>
</tr>
<tr>
<td>J-PARC K1.8</td>
<td>1.5 msr%</td>
<td>46 m</td>
</tr>
</tbody>
</table>

P.H. Pile et al., NIM A321(1992)48

K-beam experiment 2015 Apr.

K-beam experiment 2015 Nov.

Down period

1 spill 5.5s

1 spill 6s

10M π /spill

1 spill 4s
J-PARC E05 experiment

Missing-mass spectroscopy of Ξ-hypernucleus via the $^{12}\text{C}(K^-, K^+)^{12}\Xi$ reaction (Nagae et al.)
- observe peaks of the bound state
 - much improved mass resolution of $<2 \text{ MeV}$
 - deduce the information of ΞN potentials

Pilot measurement: Nov. 2015
- mass resolution $\sim7 \text{ MeV}$, w/ existing SKS spectrometer
- beam: $6\times10^5 K^-$/spill (Acc. 39kW) $K/\pi \sim 0.8$

Spectrometers
- K^-: Beam spectrometer, $dp/p<1\times10^{-3}$
 - already working at K1.8BL
- K^+: S-2S spectrometer, $dp/p \ 6\times10^{-4}$
 - newly developed for (K^-, K^+) reaction spectroscopy
 - magnet construction completed in 2015
to be installed in 2018 high resolution

Accelerator power: 80kW in 2018? enough statistics
Progress of Mass Resolution

<table>
<thead>
<tr>
<th>12C(K^-,K^+) experiments</th>
<th>KEK-E224</th>
<th>BNL-E885</th>
<th>J-PARC E05 (pilot run w/ SKS)</th>
<th>J-PARC E05 (S–2S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \Omega$ (msr)</td>
<td>90</td>
<td>50</td>
<td>110</td>
<td>60</td>
</tr>
<tr>
<td>θ (deg)</td>
<td><12</td>
<td><14</td>
<td><16</td>
<td><8</td>
</tr>
<tr>
<td>pK^+ (GeV)</td>
<td>0.9 – 1.7</td>
<td>1.0 – ?</td>
<td>1.1 – 2.4</td>
<td>1.2 – 1.6</td>
</tr>
<tr>
<td>ΔM (MeV$_{\text{FWHM}}$)</td>
<td>22</td>
<td>14</td>
<td>7</td>
<td><2</td>
</tr>
</tbody>
</table>

First measurement optimized for MM spectroscopy

The analysis status of J-PARC E05 pilot run w/ SKS will be reported by T. Nagae on 16 Sep.
Expected spectrum

- DWIA spectrum for ESC08a interaction
- Nuclear core excitations are taken into account.

\[{^{12}\text{C}}(K^-,K^+) \rightarrow ^{12}\text{Be} \]

(T=1)

Black line: Theoretical calculation

Colored line: calculation convoluted with experimental resolution

To resolve these peaks, high energy resolution, \(\Delta E < 2 \text{ MeV} \), is essential

2016/9/12
INPC 2016, Adelaide, S. Kanatsuki
Future Extension

Systematic studies on $S=-2$ hypernuclei

- Various targets
 - light: $^7\text{Li} \rightarrow ^7\text{H}(\alpha\alpha n\Xi)$, $^{10}\text{B} \rightarrow ^{10}\text{Li}(\alpha\alpha n\Xi)$
 - spin-isospin dependence of ΞN potential
 - heavy: $^{89}\text{Y} \rightarrow ^{89}\text{Rb}$, etc.
 - mass dependence

- Double Λ-hypernuclei
 - via Ξ doorway
 - sensitive to ΞN-Λ-Λ coupling strength
 - $d\sigma/d\Omega$ is expected to be several nb/sr
 - first measurements of excited states

\[V_{\Xi N} = V_0 + \sigma \cdot \sigma V_{\sigma \sigma} + \tau \cdot \tau V_{\tau \tau} + (\sigma \cdot \sigma)(\tau \cdot \tau)V_{\sigma \sigma \tau \tau} \]
S–2S spectrometer
Configuration

Scattered K⁺

Drift chamber 1,2
Q1: vertical focus
Q2: horizontal focus
D1: 70° bend
Drift chamber 3,4

Momentum analysis

Normal conducting magnets
Four sets of wire chambers
dp/p ~6x10⁻⁴ FWHM, ΔΩ 60 msr

K⁺ trigger = TOF ∧ ĀC ∧ WC
TOF: off-line particle identification
Aerogel: n=1.06 → Pion veto
Water: n=1.33 → Proton veto

Trigger counters

Beam = 10⁶ K⁻
• π⁺, p : 1000
• K⁺ : 1

Path Length ~9 m
→ K⁺: survival rate 40%
Performance Estimation

\[\frac{d\rho}{\rho} \sim 6 \times 10^{-4} \text{ (FWHM)} \]

Momentum resolution

\[\sigma_x = 250 \text{ um (rms)} \]

Solid Angle

\[d\Omega \sim 60 \text{ msr} \]

Hypernuclear production

\[p(K, K^+) \Xi \]

Simulation

\[\text{INPC 2016, Adelaide, S. Kanatsuki} \]

2016/9/12
Magnets

- **Q1 (vertical focus)**
 - 8.7 T/m
 - aperture 31 cm
 - 37 ton
 - $2.4 \times 2.4 \times 0.88 \text{ m}^3$

- **Q2 (horizontal focus)**
 - 5.0 T/m
 - aperture 36 cm
 - 12 ton
 - $2.1 \times 1.54 \times 0.5 \text{ m}^3$
 - renewal one with modification of poles and coils

- **D1**
 - 1.5 T (70° bend @ 1.37 GeV/c)
 - pole gap $32 \times 80 \text{ cm}^2$
 - 86 ton
 - central trajectory 3.7 m

Scattered K⁺

INPC 2016, Adelaide, S. Kanatsuki
Q1, Q2 magnet

- Field Measurement
 - with Hall probe
 - field gradient
 - Q1: 8.7 T/m, Q2: 5.0 T/m
 - enough to achieve large acceptance

- Field Calculation
 - 3D electromagnetic field calculation software Opera-3d/TOSCA
D1 magnet

- **Field Measurement**
 - Excitation curve is measured by using NMR

 - By ~1.5 T at the center of the gap

- **Field distribution**
 - Will be measured by using Hall probe
 - Study is ongoing at KEK

- **Leak field**
 - Measured by using gaussmeter: ~5 Gauss
 - Active cancellation of leak field by using a bucking coil for PMT on the trigger counters
Summary

• Ξ hypernuclei
 – the last piece of baryon-baryon interaction in $SU_f(3)$
 – Ξ in neutron star?

• J-PARC E05 experiment
 – missing-mass spectroscopy via the $^{12}\text{C}(K^-, K^+)^{12}\Xi\text{Be}$ reaction
 – with a new magnetic spectrometer S–2S
 • magnets and detectors are almost completed
 • to be installed in J-PARC in 2018 \rightarrow E05 Run starts!
 – mass resolution of <2 MeV and $d\Omega$ ~60 msr \rightarrow 250 events in 20 days

• Systematic study of S=−2 hypernuclei
 – high-resolution measurement of Ξ- & $\Lambda\Lambda$-hypernuclei with intense K^- beam
 – so far, only confirmation of the existence of bound states
 \rightarrow investigation of the details of the ΞN, $\Lambda\Lambda$ interaction
Backup
Interaction Model Dependence

The shapes of spectra depend on the properties of spin-dependent term of interaction models.
Double Λ hypernuclei

(a) ~ 0.1 nb/sr

(b) $7 \sim 12$ nb/sr

Sensitive to ΞN-$\Lambda \Lambda$ coupling strength

Double Λ hypernuclei

- $^{16}\text{O}\ (K^-, K^+) \Lambda \Lambda^{16}\text{C}$

- $[^{15}\text{N}(1/2^-, 3/2^-)\times s_{\Xi}]_1^- \rightarrow [^{14}\text{C}(0^+, 2^+)]\times s_{\Lambda p}\Lambda_1^-$

- $[^{15}\text{N}(1/2^-, 3/2^-)\times p_{\Xi}]_2^+ \rightarrow [^{14}\text{C}(0^+, 2^+)]\times p_{\Lambda^2}^2_2^+$

\[\Delta E_{\text{exp}} = 1.5 \text{ MeV}\]

\[\Delta E_{\text{exp}} = 3 \text{ MeV}\]

Cross section of $p(K^-, K^+)\Xi^-$

Mass Resolution

High-Res Spec. “S-2S”

\[
\Delta M^2 = \left(\frac{\partial M}{\partial p_B} \right)^2 \Delta p_B^2 + \left(\frac{\partial M}{\partial p_S} \right)^2 \Delta p_S^2 + \left(\frac{\partial M}{\partial \theta} \right)^2 \Delta \theta^2 + \Delta E_{\text{strag.}}^2
\]

$^{12}\text{C}(K^-,K^+) \rightarrow ^{12}\text{Be}$, $\theta=5^\circ$, $E_{\text{hyp}}=0$ MeV, $\Delta \theta=2$ mrad [MeV]

<table>
<thead>
<tr>
<th></th>
<th>Beam</th>
<th>Scat</th>
<th>θ</th>
<th>ΔM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design value</td>
<td>0.84</td>
<td>0.62</td>
<td>0.04</td>
<td>1.0</td>
</tr>
<tr>
<td>Realistic?</td>
<td>1.67</td>
<td>3.74</td>
<td>0.04</td>
<td>1.8</td>
</tr>
<tr>
<td>Pilot run</td>
<td></td>
<td></td>
<td>0.04</td>
<td>4.1</td>
</tr>
</tbody>
</table>

$\Delta E_{\text{strag}} \leftarrow$ Target thickness

1 MeV \leftarrow 3 g/cm2
2 MeV \leftarrow 6 g/cm2
3 MeV \leftarrow 10 g/cm2

- Momentum resolution $\Delta p/p$ (FWHM)
 - Beam: (design) $<5 \times 10^{-4}$
 - (realistic?) 1×10^{-3} \leftarrow evaluation in other experiments at J-PARC
 - Scat: SKS (used in pilot run) 3×10^{-3}
 - S-2S 5×10^{-4}
Kinematics

\[p_{K^-} = 1.8 \text{ GeV/c} \quad \leftrightarrow \quad p_{K^+} = 1.2 \sim 1.4 \text{ GeV/c} \]

Recoil Momentum

Momentum of \(K^+ \)

Fig. 2.3. The momentum \(q_\gamma \) transferred to the hyperon \(\gamma \) as a function of the projectile momentum \(p_{\text{proj}} = p_s \) in the reaction \(aN \rightarrow \gamma \gamma \) at \(\theta_{\gamma \gamma} = 0^\circ \).

2016/9/12

INPC2016, Adelaide, S. Kanatsuki
Momentum Resolution

\[\frac{dp}{p} \approx 6 \times 10^{-4} \text{ (FWHM)} \]

Magnet condition
Q1, Q2, D1 = 2500A (max)
Solid Angle

Magnetic field ← TOSCA calculation
Q1,Q2,D1 = 2500A (max)

Particles just passing through the magnets
= not including detector configuration
1. Various products off targets
 • Reaction rate: \(\sim 10\% \)

2. Decay of beam \(K^- \)
 - \(K^- \rightarrow \pi^- \pi^- \pi^+ \) (B.R. 5.6%)
 - \(K^- @ 1.8 \text{ GeV/c: } \beta \gamma c \tau \sim 13.5 \text{ m} \)

3. Reactions on the D1 yoke
 • \(K^- + \text{Fe} \rightarrow \text{many particles} \)
Backgrounds not from the Target

- Decay of beam $K^- \&$ Reactions on the D1yoke

![Graph showing beam-induced background and Geant4 simulation]

- Beam $K^- = 10^6$
 - Only neutrons can reach the counters at the exit
 - A few tens of π^+ from K^- decay

- Most charged particles stop inside of the D1
Reactions in target

• Background estimation
 – JAM v1.210 : Jet AA Microscopic transport model

\[K^+ p \rightarrow \bar{\Xi} - K^+ \]
\[K^- p \rightarrow \bar{\Xi}^* K^- \]
\[K^- p \rightarrow p K^- \]
\[K^- p \rightarrow p \pi K^- \]
\[K^- n \rightarrow p \pi^- K^- \]
\[K^- p \rightarrow \bar{\Lambda} \pi^+ \pi^- \]
\[K^- p \rightarrow \Sigma^+ \pi^+ \]

\[3.2 \pm 0.05 \text{ GeV/c} \]

\[S_{2S} : 0 < 18^\circ \]

Out of Acceptance!

Compilation of Cross-Sections : K+ induced reactions, CERN-Library(1983)
Background Distributions

JAM simulation
$10^6 K^- @ 1.8 \text{GeV/c}, \ 3 \text{g/cm}^2, ^{12}\text{C target}$
Field Calculation of D1

• Calculation by Opera/TOSCA-3d
 – Input model will be tuned after field measurement

1.49 Tesla

20~50 Gauss @Counters
Status summary

Magnets
- Q1, Q2: Ready
- D1: Field measurement is ongoing

Existing Detectors
- DC 1
- DC 3, 4
 - 1 m × 1 m Drift chambers
 - Need some repairments
- AC
 - Ready

New Detectors
- TOF
 - Plastic scintillator
- DC 2
 - 2.5mm-pitch, vertically large size
- Water Cherenkov
 - T. Gogami, et al., NIM A, 817 (2016) 70
Active Fiber Target

- Scintillating fiber
 - scintillation light yield → correction of the energy of kaons event-by-event

Energy losses of
- Beam K^-
- Scat. K^+
- Decay particles from hypernucleus
 should be measured separately → Target must be segmented
Active Fiber Target

- Scintillating fiber bundle
 - 3x3 mm square or 3 mm Φ (→ 50×18+16×18 ≡ 1000)
 - MPPCs attached on the both ends of each fiber
Expected spectrum

12 C(K^-, K^+)\text{^{12}Be} \(E_K = 1.7 \) GeV/c \((\theta_{\text{lab}} = 0) \)

Hypernuclear Energy \(E_{\Xi} \) (MeV)

Three \(1^- \) states with widths of 2.5 MeV\text{FWHM}

20 days 60 days